Presentation
4 October 2022 Orbital torque in magnetic bilayers (Conference Presentation)
OukJae Lee, Kyung-Jin Lee, Hyun-Woo Lee, Dongjoon Lee, Dongwook Go, Hyeon-Jong Park
Author Affiliations +
Abstract
The orbital Hall effect describes an electric-field-induced generation of the orbital current flowing in a perpendicular direction to the field, analogous to the spin Hall effect [1]. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in spin-torque on the magnetization, which provides a way to detect the orbital Hall effect [2]. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers [3]. Analysis of the spin-torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering. [1] Phys. Rev. B 77, 165117 (2008), Phys. Rev. Lett. 102, 016601 (2009). [2] Phys. Rev. Res. 2, 013177 (2020), arXiv: 2107.08478. [3] Nat. Comm. 12, 6710 (2021).
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
OukJae Lee, Kyung-Jin Lee, Hyun-Woo Lee, Dongjoon Lee, Dongwook Go, and Hyeon-Jong Park "Orbital torque in magnetic bilayers (Conference Presentation)", Proc. SPIE PC12205, Spintronics XV, PC1220516 (4 October 2022); https://doi.org/10.1117/12.2635820
Advertisement
Advertisement
KEYWORDS
Magnetism

Tantalum

Ferromagnetics

Metals

Modulation

Back to Top