Filamentation induced by femtosecond laser pulses in transparent dielectrics has received much attention due to its potential application prospects in micro processing fields. The processing mechanism is essentially determined by the interaction between femtosecond laser pulses and matters, and subsequent filament properties. However, the evolution characteristics of filaments have not been systematically investigated. Herein, we observed the spatiotemporal evolution of filaments induced by a femtosecond laser pulse in silica glass and sapphire by using time-resolved pump-probe shadowgraphy. The dependence of filament evolution on material properties was analyzed, considering the excitation and decay of electronic plasma. In addition, we conducted experiments under different pump powers and focal depths, to clarify the dependence of filament on laser parameters. This study contributes to the understanding of filamentation mechanism and precise control of micro processing applications.
|