Patricia Vieten,1,2 Kris K. Dreher,1,2 Niklas Holzwarth,1 Melanie Schellenberg,1,2 Jan-Hinrich Nölke,1 Alexander Seitel,1 Janek Gröhlhttps://orcid.org/0000-0002-5332-4856,3 Zoë Rachel,4 Andrei Siea,1,2,5 Thomas Held,4 Sebastian Adeberg,4 Jürgen Debus,4 Lena Maier-Hein1,2
1Deutsches Krebsforschungszentrum (Germany) 2Ruprecht-Karls-Univ. Heidelberg (Germany) 3Cancer Research UK Cambridge Institute, Univ. of Cambridge (United Kingdom) 4UniversitätsKlinikum Heidelberg (Germany) 5Univ. degli Studi di Bologna (Italy)
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Patricia Vieten, Kris K. Dreher, Niklas Holzwarth, Melanie Schellenberg, Jan-Hinrich Nölke, Alexander Seitel, Janek Gröhl, Zoë Rachel, Andrei Siea, Thomas Held, Sebastian Adeberg, Jürgen Debus, Lena Maier-Hein, "Deep learning-based semantic segmentation of clinically relevant tissue structures leveraging multispectral photoacoustic images," Proc. SPIE PC11960, Photons Plus Ultrasound: Imaging and Sensing 2022, PC119600P (7 March 2022); https://doi.org/10.1117/12.2608616