Fluorescent genetically encoded voltage indicators can be combined with optical imaging to provide high-throughput electrophysiologic recordings with single-spike resolution and subthreshold sensitivity. Such voltage imaging is highly demanding in terms of signal collection; thus, most experiments have been performed with widefield one-photon microscopy. Unfortunately, widefield techniques are susceptible to out-of-focus background and scattering, which degrades SNR, especially in high-density slice or in vivo experiments. In this work, we describe a multi-plane near-kHz-rate confocal microscope that effectively suppresses undesired background. This technique enables more densely labeled in vitro and in vivo imaging experiments, critical for the dissection of neural circuit dynamics.
|