Presentation + Paper
25 October 2016 Continuous evapotranspiration monitoring and water stress at watershed scale in a Mediterranean oak savanna
E. Carpintero, M. P. González Dugo, C. Hain, H. Nieto, F. Gao, A. Andreu, W. P. Kustas, M. C. Anderson
Author Affiliations +
Abstract
The regular monitoring of the evapotranspiration rates and their links with vegetation conditions and soil moisture may support management and hydrological planning leading to reduce the economic and environmental vulnerability of complex water-controlled Mediterranean ecosystems. In this work, the monitoring of water use over a basin with a predominant oak savanna (known in Spain as dehesa) was conducted for two years, 2013 and 2014, monitoring ET at both fine spatial and temporal resolution in different seasons.

A global 5 km daily ET product, developed with the ALEXI model and MODIS day-night temperature difference, was used as starting point. Flux estimations with higher spatial resolutions were obtained with the associated flux disaggregation scheme, DisALEXI, using surface temperature data from the polar orbiting satellites MODIS (1 Km, daily) and Landsat 7/8 (60-120m and sharpened to 30m, 16 days) and the previously estimated coarse resolution fluxes. The results achieved supported the ability of this scheme to accurately estimate daytime-integrated energy fluxes over this system, using input data with different spatio-temporal resolution and without the need for ground observations. Daily ET series at 30 m spatial resolution, generated using STARFM fusion technique, has provided a significant improvement in spatial heterogeneity assessment of the ET series, with RMSE values of 0.56 and 0.68 mm/day for each year, representing an enhancement with respect to interpolated Landsat series. In summary, this approach was demostrated to be robust and operative to map ET at watershed scale with a suitable spatial and temporal resolution for applications over the dehesa ecosystem.
Conference Presentation
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
E. Carpintero, M. P. González Dugo, C. Hain, H. Nieto, F. Gao, A. Andreu, W. P. Kustas, and M. C. Anderson "Continuous evapotranspiration monitoring and water stress at watershed scale in a Mediterranean oak savanna", Proc. SPIE 9998, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, 99980N (25 October 2016); https://doi.org/10.1117/12.2241521
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Earth observing sensors

Landsat

MODIS

Ecosystems

Vegetation

Atmospheric modeling

Spatial resolution

Back to Top