Paper
27 May 2011 Hybrid light source for scanning white light interferometry-based MEMS quality control
V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, E. Hæggström
Author Affiliations +
Abstract
We apply a hybrid light source with adjustable spectrum to Scanning White Light Interferometric MEMS device characterization. The source combines light from a blue laser (409 nm), a fluorescent material (emission peak 521 nm), amber LED (597 nm) and cyan LED (505 nm) to cover the visible wavelengths. The Gaussian spectrum of the light source reduces interference ringing and improves surface localization, which is important when imaging diffuse surfaces or layered structures. The new light source allows both stroboscopic illumination and spectrum shaping during a measurement. Changing the illumination spectrum allows one to maximize the reflection from the measured surface - compared to reflections from other surfaces - as a mean to improve signal-to-noise-ratio. To validate the source we measured static MEMS samples featuring known step heights using the light source at three different mean wavelengths (508 nm, 524 nm and 579 nm). The measured step heights (7.029 ± 0.045 μm, 7.002 ± 0.041 μm and 7.005 ± 0.056 μm) were close to those measured using a halogen lamp (7.025 ± 0.020 μm). Interferograms without the side lobes typical for white LEDs were achieved. The FWHM of the interferogram of the combined light source was (1.859 ± 0.008 μm).
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström "Hybrid light source for scanning white light interferometry-based MEMS quality control", Proc. SPIE 8082, Optical Measurement Systems for Industrial Inspection VII, 80822O (27 May 2011); https://doi.org/10.1117/12.889362
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Light sources

Light emitting diodes

Light

Microelectromechanical systems

Halogens

Optical testing

Fluorescent materials

Back to Top