Paper
15 May 2007 Fabrication process for a flexible tag microlab
E. Abad, B. Mazzolai, A. Juarros, D. Gómez, A. Mondini, I. Sayhan, A. Krenkow, Th. Becker
Author Affiliations +
Proceedings Volume 6589, Smart Sensors, Actuators, and MEMS III; 65890O (2007) https://doi.org/10.1117/12.723737
Event: Microtechnologies for the New Millennium, 2007, Maspalomas, Gran Canaria, Spain
Abstract
The aim of this paper is to present an integrated process flow for a smart tag with integrated sensors and RFID communication, a Flexible Tag Microlab (FTM). The heart of the designed container tracing system is an RFID system (Reader + Tag) with gas sensing capabilities on board. In the former prototypes, the chemical sensors were integrated on the reader, whereas the tags where addressed like conventional RFID-tags containing also physical (temperature, humidity and light) sensors. However, this paper will show how the gas sensing reader functionalities are being transferred to the tag, reaching a flexible tag microlab, which represents a real innovation in the field of flexible labels. Key issues for the realisation of the FTM, such us flexible substrates and gas sensor integration technologies will be presented. The process flow employed for the two metal levels interconnect fabrication will be described in detail. The material used is the DuPontTM Pyralux(R) AP 8525R double-sided copper-clad laminate, formed by a Kapton foil with a copper layer on each side. The vias and windows openings are performed by femtosecond laser ablation. The copper interconnections are realized by photolithography and wet chemical etching. The MOX sensors hotplates specially developed to fulfil the FTM constrains in terms of low power consumption has been used to prove two integration technologies into the flexible substrates: Chip on Flex (COF) wire bonding and Anisotropic Conductive Adhesive (ACA) flip chip bonding. Both technologies will be compared and benchmarked for future product developments.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
E. Abad, B. Mazzolai, A. Juarros, D. Gómez, A. Mondini, I. Sayhan, A. Krenkow, and Th. Becker "Fabrication process for a flexible tag microlab", Proc. SPIE 6589, Smart Sensors, Actuators, and MEMS III, 65890O (15 May 2007); https://doi.org/10.1117/12.723737
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Copper

Gas sensors

Prototyping

Resistance

Flexible circuits

Adhesives

Back to Top