Paper
7 June 2005 Absorption and photocurrent properties of low-temperature laser deposited thin-film GaAs on glass
A. Erlacher, M. Ambrico, G. Perna, L. Schiavulli, T. Ligonzo, H. Jaeger, B. Ullrich
Author Affiliations +
Proceedings Volume 5850, Advanced Laser Technologies 2004; (2005) https://doi.org/10.1117/12.633697
Event: Advanced Laser Technologies 2004, 2004, Rome and Frascati, Italy
Abstract
The absorption edge of thin-film GaAs on glass has been investigated with the standard constant photocurrent method (s-CPM) method and photocurrent analysis. The films have been formed by pulsed-laser deposition (PLD) employing the 532 nm emission of a YAG:Nd laser (6 ns, 10 Hz). Notably, the films have been deposited without heating the substrate. Fitting the measured absorption data with the crystalline density of states and the Urbach tail a very good agreement has been found. X-ray analysis showed that the films are predominately oriented towards the (111) plane. The function used to fit the absorption data describes the photocurrent data at different biases as well. Annealing of the samples up to 400 K did not cause notable changes in the absorption edge and overall photocurrent spectra. The presented results reveal that "cold" PLD, i.e., without substrate heating, forms high-quality oriented photosensitive thin-film GaAs on glass, which hardly alters its optoelectronic features under thermal treatment. Under this prospect and due to the relative ease to form the films, PLD GaAs might be of interest for applications in optoelectronics and photovoltaics.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Erlacher, M. Ambrico, G. Perna, L. Schiavulli, T. Ligonzo, H. Jaeger, and B. Ullrich "Absorption and photocurrent properties of low-temperature laser deposited thin-film GaAs on glass", Proc. SPIE 5850, Advanced Laser Technologies 2004, (7 June 2005); https://doi.org/10.1117/12.633697
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Gallium arsenide

Absorption

Glasses

Thin films

Crystals

Optoelectronics

X-rays

Back to Top