Paper
22 January 2005 On-chip replication of high-sag micro-optical components fabricated by direct laser writing
Daniel Asselin, Patrice Topart, Lieyi Sheng, Felix Cayer, Sebastien Leclair, Min Wang, Hubert Jerominek
Author Affiliations +
Abstract
This paper describes the fabrication of very high-sag (up to 42 μm) microlenses by direct laser writing and their integration onto a simple microoptical bench processed by conventional microfabrication technologies pertaining to MOEMS. At the heart of such a work is INO's laser writer. It is based on a He-Cd laser operating at 442 nm whose intensity can be modulated up to 1024 levels, and on a 40 nm accuracy X-Y translation stage. Laser writing into thick photoresist layers introduces however particular problems in terms of the roughness achievable. Simulations show that the writing beam diameter, the line-to-line spacing and the translation stage accuracy contribute to some unavoidable residual roughness. By applying optimized laser writing parameters, arrays of 1 x 5 aspherical microlenses were fabricated in a thick positive photoresist, along with alignment marks concurrently generated for on-chip alignment purposes. The microlenses were successfully integrated with a microoptical bench by first generating a UV-transparent mold from the photoresist laser written master. The microlenses imprinted in the mold were then replicated in a layer of hybrid glass material cast on the microoptical bench by UV-embossing with a modified MA6 mask aligner. The uniformity of focal lengths was approximately 3% as determined from best fits of profilometric traces. The replication with alignment of this array in a hybrid glass material was demonstrated on a 12 mm x 12 mm microoptical bench chip. An alignment accuracy of less than 5 μm was obtained. The replication error was less than about 4%. The measured surface roughness was 50-60 nm RMS, in good agreement with simulation results.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Daniel Asselin, Patrice Topart, Lieyi Sheng, Felix Cayer, Sebastien Leclair, Min Wang, and Hubert Jerominek "On-chip replication of high-sag micro-optical components fabricated by direct laser writing", Proc. SPIE 5720, Micromachining Technology for Micro-Optics and Nano-Optics III, (22 January 2005); https://doi.org/10.1117/12.591719
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Microlens

Photoresist materials

Multiphoton lithography

Glasses

Optical alignment

Microlens array

Indium oxide

Back to Top