Paper
14 June 2004 Periodic poling of stoichiometric lithium tantalate
Author Affiliations +
Abstract
The periodic poling of stoichiometric lithium tantalate, a nonlinear optical material with great promise for the frequency conversion of high-average-power solid state lasers, has been investigated. Two problems with commercially available stoichiometric lithium tantalate substrates have been identified: non-reproducibility of the coercive field from one wafer to the next, and susceptibility to the formation of micro-domain defects. Strategies for dealing with these problems have been developed. Wafer-scale poling has been carried out to produce quasi-phasematching gratings with periods as short as 7.3 microns on half-millimeter thick substrates and 25.4 microns on millimeter-thick substrates. The phase-matching properties of periodically poled stoichiometric lithium tantalate have been measured using nonlinear optical frequency conversion. For processes which generate visible radiation, good agreement with predictions based on the published Sellmeier equation for stoichiometric lithium tantalite has been obtained.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Douglas J. Bamford, David J. Cook, and Scott J. Sharpe "Periodic poling of stoichiometric lithium tantalate", Proc. SPIE 5337, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications III, (14 June 2004); https://doi.org/10.1117/12.528311
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Semiconducting wafers

Lithium

Crystals

Photoresist materials

Power supplies

Second-harmonic generation

Oxides

Back to Top