Paper
22 August 2000 Bayesian optimal classification of metallic objects: a comparison of time-domain and frequency-domain EMI performance
Author Affiliations +
Abstract
Traditionally, field EMI sensors are operated in the time- domain. The time-domain (TD) EMI sensor usually is a pulsed system. It contains both a transmitting coil and a receiving coil. After transmitting an excitation pulse, which generates the primary field, the receiving coil records the secondary field in the late time. Since a TD EMI sensor measures only the late-time responses, the information contained in the early time response is lost thus limiting the types of objects that can be discriminated. Alternatively, EMI sensors can be operated in the frequency- domain (FD). In this case, the excitations are sinusoidal signals and the sensor measures the static response. The advantages and disadvantages of TD and FD EMI sensors are reviewed in this paper. For landmine and UXO detection, discrimination of targets of interest from clutter is required, since the cost of large false alarm rates is substantial amounts of money, labor and time. In order to discriminate targets from clutter, Bayesian optimal classifiers are derived. Traditional detectors for these applications only utilize the energy of the signal at the position under test or the output of a matched world scenario, the depth of the underground objects is uncertain. The optimal classifier that we utilize takes these uncertainties into account also. In this paper, we present classification performance for four metal objects using TD and FD EMI data. Experimental data were taken with the PSS- 12, a standard army issued metal detector, and the GEM-3, a prototype frequency-domain EMI sensor. Although the optimal classifier improves performance for both TD and FD data, FD classification rate are higher than those for TD systems. The theoretical basis for this result is explored.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ping Gao, Leslie M. Collins, and Lawrence Carin "Bayesian optimal classification of metallic objects: a comparison of time-domain and frequency-domain EMI performance", Proc. SPIE 4038, Detection and Remediation Technologies for Mines and Minelike Targets V, (22 August 2000); https://doi.org/10.1117/12.396251
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Electromagnetic coupling

Data modeling

Metals

Aluminum

Computer simulations

Land mines

RELATED CONTENT


Back to Top