Paper
20 July 1998 Some experimental results on ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators
Mohsen Shahinpoor, Yoseph Bar-Cohen, T. Xue, Joycelyn S. Harrison, Joseph G. Smith
Author Affiliations +
Abstract
This paper discusses a number of recent findings in connection with ion-exchange polymer-noble metal composites (IPMC) as biomimetic sensors and actuators. These smart composites exhibit characteristics of both actuators and sensors. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasi-statically or dynamically, a voltage is produced across the thickness of the strip between the two conducting electrodes attached. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape and in particular in the form of micro sensors and micro actuators for MEMS applications. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these ionic polymer-metal composites as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMC's. When the applied signal frequency is varied, so does the displacement up to a point where large deformations are observed at a critical frequency called resonant frequency where maximum deformation is observed. Beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Furthermore, reported in this paper are load characterization of such active polymer composites made with a noble metal such as platinum. The results showed that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally, reported are the cryogenic properties of these muscles for possible use by NASA in a harsh outer space environment of a few Torrs and temperatures of the order of -140 degrees Celsius. These muscles are shown to work quite well in such harsh cryogenics environment and thus present a great potential as sensors and actuators that can operate at cryogenic temperatures.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mohsen Shahinpoor, Yoseph Bar-Cohen, T. Xue, Joycelyn S. Harrison, and Joseph G. Smith "Some experimental results on ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators", Proc. SPIE 3324, Smart Structures and Materials 1998: Smart Materials Technologies, (20 July 1998); https://doi.org/10.1117/12.316870
Lens.org Logo
CITATIONS
Cited by 37 scholarly publications and 2 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Composites

Sensors

Polymers

Artificial muscles

Robotics

Metals

Back to Top