Paper
9 October 1997 Hole transport in enamine-doped polymers
Susan A. Visser, John A. Sinicropi, Edward H. Magin, Paul M. Borsenberger
Author Affiliations +
Abstract
Hole mobilities of a series of enamine (ENA) derivatives doped into poly(styrene) (PS) have been measured over a wide concentration range. At high fields and high ENA concentrations, the room temperature mobilities are in excess of 10-3 cm2/Vs. These are the highest of any doped polymers described in the literature. The results are described by a model based on disorder. According to the model, charge transport occurs by hopping through a manifold of localized states that are distributed in energy and distance. The key parameters of the model are a, the energy width of the hopping site distribution, the degree of positional disorder, and μ0, a prefactor mobility. The width of the hopping site manifold is described by a model of dipolar disorder. The model is premised on the assumption that the total width is comprised of a dipolar component and a van der Waals component. For weakly polar molecules, the dipolar component vanishes and the total width is determined only by the van der Waals component. The values for ENA doped PS are betweeen 0.077 and 0.103 eV, increasing with increasing dilution. The prefactor mobilities are between 10-6 and 10-1 cm2/Vs, increasing with increasing concentration. Values of the positional disorder parameter are between 1.6 and 4.8. The high mobilities in these materials are due to the low values of the van der Waals components and the high prefactor mobilities.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Susan A. Visser, John A. Sinicropi, Edward H. Magin, and Paul M. Borsenberger "Hole transport in enamine-doped polymers", Proc. SPIE 3144, Xerographic Photoreceptors and Organic Photorefractive Materials II, (9 October 1997); https://doi.org/10.1117/12.290244
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Molecules

Picosecond phenomena

Clouds

Coating

Dye lasers

Molecular bridges

Back to Top