Paper
13 August 1993 Issues in high-power FEL design at the Continuous Electron Beam Accelerator Facility
Author Affiliations +
Proceedings Volume 1868, Laser Resonators and Coherent Optics: Modeling, Technology, and Applications; (1993) https://doi.org/10.1117/12.150626
Event: OE/LASE'93: Optics, Electro-Optics, and Laser Applications in Scienceand Engineering, 1993, Los Angeles, CA, United States
Abstract
The Continuous Electron Beam Accelerator Facility (CEBAF) is a prime example of the progress that SRF technology has made. CEBAF was designed to operate at 1500 MHz due to the needs of nuclear physics users and the relative maturity of the Cornell cavity design on which it is based. CEBAF will be operational in 1994 and is designed for 4 GeV of energy at 200 microamps of CW average current. The specified emittance (< 1 nm at 1 GeV) and energy spread (< 10-4) are extremely tight although the design peak current is too low to give significant gain in an FEL. The CEBAF cavities have a specified gradient of 5 MeV/m but delivered gradients have been significantly higher, recently exceeding an average of 8.5 MeV/m for approximately 100 production cavities. The CEBAF injector has been operated at energies up to 85 MeV and has met all designs specifications in over 3000 hours of around-the-clock operation. Two FELs utilizing a high charge injector have been designed. The CW nature of the beam results in high average powers (order 1 kW) from the IR FEL in the region from 4 to 20 microns and from the UV FEL in the 0.15 to 0.25 micron region. Tunable radiation at this power level places extreme demands on the optical systems. The approaches developed to resolve the optics issues will be examined and progress in implementation and testing is presented.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
George R. Neil and Stephen V. Benson "Issues in high-power FEL design at the Continuous Electron Beam Accelerator Facility", Proc. SPIE 1868, Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, (13 August 1993); https://doi.org/10.1117/12.150626
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Free electron lasers

Ultraviolet radiation

Electron beams

Mirrors

Nuclear physics

Optical resonators

Resonators

Back to Top