Paper
4 May 1993 Compliant-linkage kinematic design for multi-degree-of-freedom mobile robots
Author Affiliations +
Proceedings Volume 1831, Mobile Robots VII; (1993) https://doi.org/10.1117/12.143827
Event: Applications in Optical Science and Engineering, 1992, Boston, MA, United States
Abstract
Multi-degree-of-freedom (MDOF) vehicles have many potential advantages over conventional (i.e., 2-DOF) vehicles. For example, MDOF vehicles can travel sideways and they can negotiate tight turns more easily. In addition, some MDOF designs provide better payload capability, better traction, and improved static and dynamic stability. However, MDOF vehicles with more than three degrees-of-freedom are difficult to control because of their overconstrained nature. These difficulties translate into severe wheel slippage or jerky motion under certain driving conditions. In the past, these problems limited the use of MDOF vehicles to applications where the vehicle would follow a guide-wire, which would correct wheel slippage and control errors. By contrast, autonomous or semi-autonomous mobile robots usually rely on dead-reckoning between periodic absolute position updates and their performance is diminished by excessive wheel slippage. This paper introduces a new concept in the kinematic design of MDOF vehicles. This concept is based on the provision of a compliant linkage between drive wheels or drive axles. Simulation results indicate that compliant linkage allows to overcome the control problems found in conventional MDOF vehicles and reduces the amount of wheel slippage to the same level (or less) than the amount of slippage found on a comparable 2-DOF vehicle.
© (1993) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Johann Borenstein "Compliant-linkage kinematic design for multi-degree-of-freedom mobile robots", Proc. SPIE 1831, Mobile Robots VII, (4 May 1993); https://doi.org/10.1117/12.143827
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mobile robots

Optical character recognition

Kinematics

Computer programming

Control systems design

Actuators

Control systems

Back to Top