The large class science mission NewATHENA, rescoped by the European Space Agency (ESA) in November 2023, will explore the hot and energetic universe using advanced X-ray technology. The key components of the telescope will be hundreds of Silicon Porous Optics (SPO) modules arranged in an optical bench with a diameter of around 2.7 metres. Considering the overall size, the delicate cell structure and the high aspect ratio in combination with the material-related challenges of Ti6Al4V, additive manufacturing using Direct Energy Deposition (DED) is a promising alternative to conventional processing. In addition to discussing fundamental challenges (e.g. shielding), the development of a highperformance hybrid DED process and associated equipment for robust long-term production will be presented. The developed end-to-end manufacturing approach will be verified by manufacturing and analysing test specimens, geometric demonstrators and representative large breadboards [1], [2].
|