PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309201 (2024) https://doi.org/10.1117/12.3049198
This PDF file contains the front matter associated with SPIE Proceedings Volume 13092, including the Title Page, Copyright information, Table of Contents, and Conference Committee information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
NASA’s Astrophysics Division features annual solicitations to fund technology development for future space flight missions. Two major, repeated calls for proposals are the Astrophysics Research and Analysis (APRA) and the Strategic Astrophysics Technology (SAT) opportunities, and there are occasional solicitations for other technology development programs. We will present the paradigm used in these solicitations, including the process for how technologies have been prioritized for inclusion in the SAT opportunity. We have statistics on selections, including groupings by subject matter and how these have evolved over time. We will discuss anecdotal aspects of NASA’s technology innovation, maturation, and flight pipeline, and how it supports early-career researchers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Jessie Dotson, Elisa Quintana, Knicole Colon, Thomas Barclay, Christina Hedges
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309203 (2024) https://doi.org/10.1117/12.3020580
The Pandora SmallSat mission is a NASA Astrophysics Pioneers mission whose goal is to assess the impact of stellar activity on exoplanet transmission spectroscopy. A secondary goal of both the Pioneers program and the Pandora mission is to provide space mission experience to early career participants with a range of expertise including scientists, engineers, and project managers. Pandora is facilitating the involvement of early career participants from undergrad to post-grad through a variety of formal and informal programs including summer internships, year long graduate student shadow opportunities, post-doctoral programs, and formal mission roles. The success of early career participants within the mission is enabled by pairing them with mentors as well as the identification and assignment of responsibilities that match their capabilities with mission needs. In addition, the Pandora mission leadership team developed and established rules of conduct to set clear expectations for all mission participants. We will discuss the details of these programs, lessons learned, and summarize the best practices Pandora has developed which enable us to contribute to the pipeline of scientists and technologists with space mission experience (while simultaneously developing a SmallSat mission).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper describes the development of a new system from the vantage point of our previous experience on Chandra and James Webb. We introduce and define what we call the problem of newness, namely system development with an incomplete understanding of the system performance. We will discuss programmatic and technical approaches to maximize engineering productivity in the development of a new complex system like NASA’s Habitable Worlds Observer or other future flagship missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309205 (2024) https://doi.org/10.1117/12.3020559
The rise of time-domain astronomy including electromagnetic counterparts to gravitational waves, gravitational microlensing, explosive phenomena, and even astrometry with Gaia, are showing the power and need for surveys with high-cadence, large area, and long time baselines to study the transient universe. A constellation of SmallSats or CubeSats providing wide, instantaneous sky coverage down to 21 Vega mag at optical wavelengths would be ideal for addressing this need. We are assembling CuRIOS-ED (CubeSats for Rapid Infrared and Optical Survey–Exploration Demo), an optical telescope payload which will act as a technology demonstrator for a larger constellation of several hundred 16U CubeSats known as CuRIOS. The full CuRIOS constellation will study the death and afterlife of stars by providing all-sky, all-the-time observations to a depth of 21 Vega magnitudes in the optical bandpass. In preparation for CuRIOS, CuRIOS-ED will launch in late 2025 as part of the 12U Starspec InspireSat MVP payload funded through the Canadian Space Agency. CuRIOS-ED will be used to demonstrate the <1” pointing capabilities of the StarSpec ADCS system and to space-qualify a commercial camera package for use on the full CuRIOS payload. The CuRIOS-ED camera system will utilize a Sony IMX455 CMOS detector delivered in an off-the-shelf Atik apx60 package which has no previous space heritage. We deconstructed and repackaged the apx60 camera to make it compatible with operations in vacuum environments as well as the CubeSat form factor, power, and thermal constraints. By qualifying this commercial camera solution, the cost of each CuRIOS satellite will be greatly decreased (∼ 100×) when compared with current space-qualified cameras with IMX455 detectors. Therefore, the results from this work have great implications on the CuRIOS mission as well as other Cube or SmallSat missions. We discuss the CuRIOS-ED mission design with an emphasis on the disassembly, repackaging, and testing of the Atik apx60 for space-based missions. The testing results include characterization of the Sony IMX455 detector and Atik electronics performance. We find a read noise of 2.43±0.05 e- at a gain of 1 electron/ADU and detector temperatures ranging from -10 C to 25 C. The apx60’s dark current is well below an electron per second at the temperatures and exposure times tested. The apx60 camera also exhibits patterned noise in the form of horizontal striping and an asymmetric signal gradient which increases across the detector’s columns. We will also comment on preliminary environmental testing results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309206 (2024) https://doi.org/10.1117/12.3021372
CubeSpec is an in-orbit demonstration CubeSat mission in the ESA GSTP programme, developed and funded by the Belgian federal space policy BELSPO. The goal of the mission is to demonstrate high-spectral-resolution astronomical spectroscopy from a 12-unit CubeSat. The technological challenges are numerous. The optical payload, consisting of an off-axis Cassegrain telescope and a compact Echelle spectrometer have been designed to fit in the bigger half of a 12U CubeSat (12x20x30cm). The telescope is built entirely from a ceramic material to limit defocusing when the spacecraft thermal environment changes. The payload radiator is shielded from the Sun via a deploying Sun shade, allowing pointing to a large part of the sky without illuminating the radiator panel. The high resolution spectrograph requires arcsecond-level pointing stability. This is achieved using a performant 3-axis wheel stabilised attitude control system with two star trackers augmented with a piezo-actuated 3-axis fine beam steering mechanism in the payload. CubeSpec is now starting the implementation phase, with a planned launch in 2026. A qualification and a flight model are being constructed and tested. We give an overview of the mission, its technologies and qualification status.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309207 (2024) https://doi.org/10.1117/12.3020319
The CANDLE Engineering Demonstration Unit (EDU) was selected by the 2022 APRA program to develop and demonstrate the ability to reach the flux accuracy and range required for an artificial flux calibration star. A critical issue in producing accurate and reliable flux calibration is systematic effects; this EDU is providing a path to deploying an artificial star calibration payload outside Earth’s atmosphere with SI-traceable calibration that enables accurate throughput characterization of astronomical and earth science observatories in space and on the ground. Such a payload could be carried independently on a dedicated platform such as an orbiting satellite, e.g. the Orbiting Configurable Artificial Star (ORCAS), by a star shade at L2, or some other independent platform to enable accurate end-to-end throughput vs. wavelength calibration that can be measured repeatedly throughout the operational lifetime of an observatory. Once calibrated, the observatory is enabled to carry out astrophysical programs whose science objectives demand high accuracy and/or high precision observations. One specific and immediate application is establishing SI-traceable standard stars beyond the current limited set. We show in this paper the progress made in developing this EDU.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309208 (2024) https://doi.org/10.1117/12.3019173
The Line Imaging Orbiter for Nanosatellite-Enabled Spectrographic Surveys (LIONESS) is a 6U cube satellite mission in development at Columbia University, supported for a 2027 launch by the NASA CubeSat Launch Initiative. The student-driven CubeSat will host a narrowband integral field spectrograph with a microlens field slicer, drawing inspiration from, and intending to complement Columbia’s ground-based Circumgalactic Hα Spectrograph (CHαS) deployed at MDM Observatory. The circumgalactic medium (CGM) may account for up to 90% of a galaxy’s mass, yet its properties are not well understood. LIONESS will observe the diffuse CGM in low-redshift galaxies, imaging hydrogen spectra to extract information about gas distribution, mass, composition, and kinematics, and aiming to provide insights into galactic formation and gas flow between the CGM and disk. As a space-based companion to CHαS, LIONESS will offer comparable narrowband H-alpha imaging over a one-degree field of view, with a significantly lower background. We present results from an initial mission concept study, flight hardware plans, and the development of an at-scale optomechanical prototype of the LIONESS spectrograph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920A (2024) https://doi.org/10.1117/12.3018609
To investigate the evolution of our Galaxy, we plan to measure the distances and motions of stars in the Galactic center region. Additionally, our goal is to detect planets within the habitable zone around mid-M-type stars using transit phenomena. To achieve these objectives, we initiated the Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) project, targeting a 40 microarcsecond annual parallax measurement and aiming photometric accuracy of less than 0.3% for mid-M-type stars. A conceptual study of the observation instrument was conducted. As a result, the telescope is designed with high stability in orbit through carefully chosen materials and a special thermal design. A three-year operation is planned to collect sufficient data for annual parallax measurements. The telescope, with a diameter of 36 cm, covers wavelengths from 1.0 to 1.6 microns using InGaAs detectors. This paper will detail how instrument parameters were selected based on scientific objectives.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920B (2024) https://doi.org/10.1117/12.3019233
With sub-microarcsecond angular accuracy, the Theia telescope will be capable of revealing the architectures of nearby exoplanetary systems down to the mass of Earth. This research addresses the challenges inherent in space astrometry missions, focusing on focal plane calibration and telescope optical distortion. We propose to assess the future feasibility of large-format detectors (50 to 200 megapixels) in a controlled laboratory environment. The aim is to improve the architecture of the focal plane while ensuring that specifications are met. The use of field stars as metrological sources for calibrating the optical distortion of the field may help to constrain telescope stability. The paper concludes with an attempt to confirm in the laboratory the performance predicted by simulations. We will also address the possibility of using such techniques with a dedicated instrument for the Habitable World Observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920C (2024) https://doi.org/10.1117/12.3019256
The TOLIMAN mission will fly a low-cost space telescope designed and led from the University of Sydney. Its primary science targets an audacious outcome in planetary astrophysics: an exhaustive search for temperateorbit rocky planets around either star in the Alpha Centauri AB binary, our nearest neighbour star system. By performing narrow-angle astrometric monitoring of the binary at extreme precision, any exoplanets betray their presence by gravitationally, engraving a tell-tale perturbation on the orbit. Recovery of this challenging signal, only of order micro-arcseconds of deflection, is normally thought to require a large (meter-class) instrument. By implementing significant innovations optical and signal encoding architecture, the TOLIMAN space telescope aims to recover such signals with a telescope aperture of only a 12.5cm. Here we describe the key features of the mission: its optics, signal encoding and the 16U CubeSat spacecraft bus in which the science payload is housed - all of which are now under construction. With science operations forecast on a timescale of a year, TOLIMAN aims to determine if the Sun’s nearest neighbour hosts a potential planetary stepping stone into the galaxy. Success would lay down a visionary challenge for futuristic high speed probe technologies capable of traversing the interstellar voids.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920D (2024) https://doi.org/10.1117/12.3019708
On 29th September 2022, the airborne observatory SOFIA flew its final science flight, concluding nearly 12 years of successful science operations. While the Astro2020 review has enabled the possibility of a NASA far-IR probe mission, such a platform - if realized instead of the alternative X-ray option - would likely not observe at best until the early-2030s. Therefore, for at least the next decade, the wavelength regime between ~30-300 µm has become inaccessible to the international community, aside from an assortment of upcoming and planned balloon-borne missions. This regime encompasses a range of key astrophysical observables across multiple spatial scales - from local star-forming cores, to molecular cloud complexes, to entire galaxies. As demonstrated by SOFIA observations, these include tracers of star formation & feedback, strong gas cooling lines, and diagnostics of dense ISM morphology, dynamics & polarization. The launch of JWST has opened new possibilities in the near- and mid-IR universe; however, the lack of complementary access to the far-IR will hamper our understanding of key concepts. In this paper, we will overview some of SOFIA’s science highlights, and present a number of major science cases for continuing far-IR observations. We will outline ongoing efforts to reprocess and preserve SOFIA’s scientific and technical archive. Finally, we will discuss how SOFIA’s scientific legacy was enabled by particular instrumentation & platform capabilities, establish where and how these capabilities can be improved upon, and place these in the context of future airborne and spaceborne far-IR mission proposals and concepts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Single Aperture Large Telescope for Universe Studies (SALTUS) is a proposed NASA Probe class mission that will provide a powerful far-infrared (far-IR) pointed space observatory to explore our cosmic origins and the possibility of life elsewhere. During its 5 year baseline mission, SALTUS will perform groundbreaking studies towards 1000s of astrophysical targets, including the first galaxies, protoplanetary disks, and numerous solar system objects. SALTUS employs a deployable 14-m aperture, with a sunshield that will radiatively cool the off-axis primary to <45K, along with cryogenic coherent and incoherent detectors that span the 34 to 660 𝜇m far-IR range at both high and moderate spectral resolutions. This spectral range is unavailable to any existing ground or space observatory. SALTUS will have 16x the collecting area and 4x the angular resolution of Herschel and is de-signed for a lifetime ≥5 years. With its large aperture and powerful suite of instruments, SALTUS’s observations will provide a giant leap forward in our capabilities to study the local and distant universe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The SAFARI-lite instrument on the SALTUS mission with its large 14 meter diameter aperture, will present the astronomical community with an unprecedented observational capability providing extremely sensitive FarIR spectroscopy at high spatial resolution. With the combination of SALTUS’ large collecting area and an array of sensitive Kinetic Inductance Detectors (KIDs) in a compact grating spectrometer configuration the SAFARI-lite instrument will generate R~300 resolution 34-230 μm spectra reaching sensitivities of order 10-20 W/m2 (5σ/1 hour) – an observing capabilityy in the Far Infra-Red domain with both spatial resolution and sensitivity at levels comparable to JWST. The instrument will provide both point source optimized spectroscopy observing modes, as well as spectroscopic imaging for small fields.
With this breakthrough capability astronomers will be able to fully address many fundamental astrophysical issues like understanding the evolution of galaxies over cosmic time, following the distribution and role of water in the evolution those galaxies, and unveiling the formation history of planetary systems in general and our own solar system in particular.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
FIRSST is a far-infrared pointed space-borne observatory led at APL for the 2023 Astrophysics $1B Probe
Class mission competition. FIRSST payload consists of a 1.8m telescope that is cryo-cooled to a temperature
of 4.7K and two instruments that allow sensitive far-infrared spectroscopy between 35 to 600 microns with
resolving powers up to a million. The PI-led science program of FIRSST aims to understand how galaxies grow in
the universe, why super-Earths to mini-Neptunes are the most frequent planets, and what is the source of water
in rocky planets. As required by NASA, 75% of the mission five-year lifetime is left open to be used by the
astronomical community through a time allocation process, similar to the selection of science programs with
Hubble and JWST. This talk will summarize the history of far-infrared astronomy, science objectives and
requirements, and the technical details of FIRSST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Direct Detection Spectrometer Instrument (DDSI) is one of two instruments designed for the Far-IR Spectroscopy Space Telescope (FIRSST) recently proposed to NASA in response to the Astrophysics Probe Explorer call. The DDSI consists of two modules: HR delivering spectra at R~20,000 to 100,000 in three select bands (HR1-3) across 56-184μm, and LR providing broadband spectral coverage at R~100 in four bands (LR1-4) across 35-260 µm. The dispersive element of the HR bands is a compact optical resonator known as a virtually imaged phase array. All DDSI bands use microwave kinetic inductance detector (MKID) arrays cooled to 120mK. The total DDSI MKID pixel count is 2612 pixels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Heterodyne Spectrometer Instrument (HSI) is one of two instruments designed for the Far-IR Spectroscopy Space Telescope (FIRSST) recently proposed to NASA in response to the Astrophysics Probe Explorer call. HSI will be the first THz cryogenic heterodyne array receiver implemented for a space mission. It has extremely high spectral resolving power (R>10^6) in order to allow detailed spectral observations. HSI covers a very wide bandwidth range between 150 and 600 microns in only 3 bands, each equipped with two 5-pixel arrays. HSI enables highly sensitive dual-polarization, multi-pixel and multi-frequency observations on a space telescope, by a careful design and by employing low-heat dissipating, low-power, but high TRL components.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
PRIMA addresses questions about the origins and growth of planets, supermassive black holes, stars, and dust. Much of the radiant energy from these formation processes is obscured and only emerges in the far infrared (IR) where PRIMA observes (24–261 um). PRIMA’s PI science program (25% of its 5-year mission) focuses on three questions and feeds a rich archival Guest Investigator program: How do exoplanets form and what are the origins of their atmospheres? How do galaxies’ black holes and stellar masses co-evolve over cosmic time? How do interstellar dust and metals build up in galaxies over time? PRIMA provides access to atomic (C, N, O, Ne) and molecular lines (HD, H2O, OH), redshifted PAH emission bands, and far-IR dust emission. PRIMA’s 1.8-m, 4.5-K telescope serves two instruments using sensitive KIDs: the Far-InfraRed Enhanced Survey Spectrometer (continuous, high-resolution spectral coverage with over an order of magnitude improvement in spectral line sensitivity and 3-5 orders of magnitude improvement in spectral survey speed) and the PRIMA Imager (hyperspectral imaging, broadband polarimetry). PRIMA opens new discovery space with 75% of the time for General Observers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The PRobe far-Infrared Mission for Astrophysics (PRIMA) is an actively cooled, infrared observatory for the community for the next decade.
On board, an infrared camera, PRIMAger, will provide observers with coverage of mid-infrared to far-infrared wavelengths from about 25 to 264 microns. PRIMAger will offer two imaging modes: the Hyperspectral mode will cover the 25-80 microns wavelength range with a resolution R~10 while the Polarimetric mode will have four broad-band filters, sensitive to polarization, from 80 to 264 microns. These capabilities have been specifically tailored to answer fundamental astrophysical questions such as black hole and star-formation coevolution in galaxies, the evolution of small dust grains over a wide range of redshifts, and the effects of interstellar magnetic fields in various environments, as well as opening a vast discovery space with versatile photometric and polarimetric capabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
FIRESS is the multi-purpose spectrometer proposed for the PRobe far-Infrared Mission for Astrophysics (PRIMA). The sensitive spectrometer on the cold telescope provide factors of 1,000 to 100,000 improvement in spatial-spectral mapping speed relative to Herschel, accessing galaxies across the arc of cosmic history via their dust-immune far-infrared spectral diagnostics. FIRESS covers the 24 to 235 micron range with four slit-fed grating spectrometer modules providing resolving power between 85 and 130. The four slits overlap in pairs so that a complete spectrum of any object of interest is obtained in 2 pointings. For higher-resolving-power studies, a Fourier-transform module (FTM) is inserted into the light path in advance of the grating backends. The FTM serves all four bands and boosts the resolving power up to 4,400 at 112 microns, allowing extraction of the faint HD transition in protoplanetary disks. FIRESS uses four 2016-pixel arrays of kinetic inductance detectors (KIDs) which operate at the astrophysical photon background limit. KID sensitivities for FIRESS have been demonstrated, and environmental qualification of prototype arrays is underway.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
R. Laureijs, R. Vavrek, G. D. Racca, R. Kohley, P. Ferruit, V. Pettorino, T. Bönke, A. Calvi, L. Gaspar Venancio, et al.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920M (2024) https://doi.org/10.1117/12.3020343
During its 6-year nominal mission, Euclid shall survey one third of the sky, enabling us to examine the spatial distributions of dark and luminous matter during the past 10 Gyr of cosmic history. The Euclid satellite was successfully launched on a SpaceX Falcon 9 launcher from Cape Canaveral on 1 July 2023 and is fully operational in a halo orbit around the Second Sun-Earth Lagrange point. We present an overview of the expected and unexpected findings during the early phases of the mission, in the context of technological heritage and lessons learnt. The first months of the mission were dedicated to the commissioning of the spacecraft, telescope and instruments, followed by a phase to verify the scientific performance and to carry out the in-orbit calibrations. We report that the key enabling scientific elements, the 1.2-meter telescope and the two scientific instruments, a visual imager (VIS) and a near-infrared spectrometer and photometer (NISP), show an inorbit performance in line with the expectations from ground tests. The scientific analysis of the observations from the Early Release Observations (ERO) program done before the start of the nominal mission showed sensitivities better than the prelaunch requirements. The nominal mission started in December 2023, and we allocated a 6-month early survey operations phase to closely monitor the performance of the sky survey. We conclude with an outlook of the activities for the remaining mission in the light of the in-orbit performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920N (2024) https://doi.org/10.1117/12.3019912
Euclid is a European Space Agency mission dedicated to the mapping of the dark Universe launched the 1st of July 2023. The mission will investigate the distance-redshift relationship and the evolution of cosmic structures. This is achieved by measuring shapes and redshifts of galaxies and clusters of galaxies up to 10 billion years away. Euclid makes use of two cosmological probes, in a wide survey over the full extragalactic sky: the Weak Gravitational Lensing (WL) and the Baryonic Acoustic Oscillations (BAOs). The WL is a method to map the dark matter and measure dark energy by measuring the apparent distortion of galaxy images by mass inhomogeneities along the line-of-sight. This probe requires extreme image quality thus constraining the optical system imaging quality and its characterization both on-ground and in-flight. The BAOs are wiggle patterns, imprinted in the clustering of galaxies, which provide a standard ruler to measure dark energy and the expansion in the Universe. The first images were released on the 7th of November 2023 showcasing the capabilities of the space segment. To achieve the stunning first images and the scientific objectives of the mission, the space segment (i.e. the spacecraft) underwent a thorough and extensive test campaign on-ground. These tests demonstrated the excellent image quality and the overall stability of both the payload and the spacecraft in a representative operational environment. In complement, further tests were performed during the commissioning phase, just after launch, to validate the spacecraft pointing stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Launched successfully on July 1st, 2023, Euclid, the M2 mission of the ESA cosmic vision program, aims mainly at understanding the origin of the accelerated expansion of the Universe. Along with a visible imager VIS, it is equipped with the NISP instrument, a Near Infrared Spectrometer and Photometer, bespoke tailored to perform a 3D mapping of the observable Universe. It operates in the near-infrared spectral range, from 900 nm to 2000 nm with 2 observing modes: as a spectrometer, the NISP instrument will permit measuring millions of galaxy spectroscopic redshifts over the 6.5 years lifetime of the Euclid mission; as a photometer, it will obtain photometric redshifts of billions of galaxies. This paper provides a description of the NISP instrument, its scientific objectives, and offers an assessment of its current performance in flight.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920P (2024) https://doi.org/10.1117/12.3017996
Due to the space radiation environment at L2, ESA’s Euclid mission will be subject to a large amount of highly energetic particles over its lifetime. These particles can cause damage to the detectors by creating defects in the silicon lattice. These defects degrade the returned image in several ways, one example being a degradation of the Charge Transfer Efficiency, which appears as readout trails in the image data. This can be problematic for the Euclid VIS instrument, which aims to measure the shapes of galaxies to a very high degree of accuracy. Using a special clocking technique called trap pumping, the single defects in the CCDs can be detected and characterised. Being the first instrument in space with this capability, it will provide novel insights into the creation and evolution of radiation-induced defects and give input to the radiation damage correction of the scientific data. We present the status of the radiation damage of the Euclid VIS CCDs and how it has evolved over the first year in space.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920Q (2024) https://doi.org/10.1117/12.3020186
In November 2022, the ESA Science Programme Committee (SPC) selected ARRAKIHS as the second Fastimplementation mission (F2) within the Agency’s Scientific Programme, with a launch planned in 2030. ARRAKIHS is designed specifically to explore, at unprecedented depth, the predictions of the Λ-Cold Dark Matter (ΛCDM) cosmological model, and to assess the significance of reported tensions between model and observations in the local Universe. Through multi-band, ultra-low surface brightness imaging of the halos of a statistically representative sample of nearby Milky Waytype galaxies, ARRAKIHS will provide key tests with which to probe both the nature of Dark Matter in the Universe, and baryonic physics currently adopted in state-of-the-art galaxy formation models. This paper describes the ARRAKIHS mission concept and the main design and implementation challenges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920R (2024) https://doi.org/10.1117/12.3022616
The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy and Astrophysics and is NASA’s next astrophysics flagship Observatory. Launching no earlier than 2026, it will conduct several wide field and time domain surveys, as well as conduct an exoplanet census. Roman’s large field of view, agile survey capabilities, and excellent stability enable these objectives, yet present unique engineering and test challenges. The Roman Observatory comprises a Spacecraft and the Integrated Payload Assembly (IPA), the latter of which includes the Optical Telescope Assembly (OTA), the primary science Wide Field Instrument, a technology demonstration Coronagraph Instrument, and the Instrument Carrier, which meters the OTA to each instrument. The Spacecraft supports the IPA and includes the Bus, Solar Array Sun Shield, Outer Barrel Assembly, and Deployable Aperture Cover. It provides all required power, command handling, attitude control, communications, data storage, and stable thermal control functions as well as shading and straylight protection across the entire field of regard. This paper presents the Observatory as it begins integration and test, as well as describes key test and verification activities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920S (2024) https://doi.org/10.1117/12.3020622
Surveys in space and time are key to answering outstanding questions in astrophysics. The power to study very large numbers of stars, galaxies, and transient events over large portions of the sky and different time scales has repeatedly led to new breakthroughs. The Nancy Grace Roman Space Telescope (Roman), NASA’s next Astrophysics Flagship mission, elevates wide field and time domain survey observations to previously inaccessible scales. Roman carries the Wide Field Instrument (WFI), which provides visible to near-infrared imaging and spectroscopy with an unprecedented combination of field-of-view, spatial resolution, and sensitivity. When combined with a highly stable observatory and efficient operations, the WFI allows surveys never before possible. These observations will lead to new discoveries in cosmology, exoplanets, and a very wide array of other astrophysics topics ranging from high redshift galaxies to small bodies in the solar system. This paper provides an overview of Roman survey science, connects this science to the design of the WFI, and provides a status update on WFI hardware build and test.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920T (2024) https://doi.org/10.1117/12.3020511
Slated for launch in 2025, SPHEREx will be NASA’s next astrophysics explorer mission. Optimized to meet rigorous requirements to precisely map the Universe’s large scale structure, produce deep maps of the diffuse extra-galactic background, and to survey the Milky Way’s biogenic ice content, the SPHEREx telescope’s widefield optical design utilizes a series of custom near infrared linear variable filters to survey the entire sky spectroscopically. This unique instrument has now completed its construction phase and is fully assembled for flight. To precisely focus and calibrate the optical and spectroscopic properties of SPHEREx, a custom optical-cryogenic facility was developed and commissioned. In this overview, we describe the implementation of the recently completed instrument integration and testing campaign, delivering a well characterized imaging spectrometer to be integrated with the rest of the observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920U (2024) https://doi.org/10.1117/12.3020423
REX is a NASA Astrophysics Small Explorer Mission concept to chart the history of cosmic dawn in unprecedented detail in space and time. REX will identify very young galaxies and black holes by means of their powerful Lyman alpha (Lyα) line emission using about 10 narrow-bandpass filters covering about 100 square degrees. The strong line emission identifies samples of the most actively star-forming early galaxies, believed to be the drivers of reionization. Moreover, mapping the distribution and properties of the Lyman alpha emitting population will reveal the distribution of ionized and neutral gas, because neutral gas scatters Lyman alpha light, rendering them difficult to detect. REX will use an 0.5-1m telescope and 1 square degree field of view, tiled with HgCdTe detectors with development heritage from the Nancy Grace Roman Space Telescope. Its large, flexible filter complement will be used in a point-and-stare mode to identify Lyα emitting galaxies at a range of discrete redshift slices spanning the reionization era. In addition to its core reionization surveys, REX brings a new capability of tracing gas emission over large scales at the peak of star and black formation era. We will find millions of the youngest, least massive galaxies in epochs spanning the most active growth period of the universe. Applications will include ionized gas in nearby and distant galaxies, active galactic nuclei, and galaxy clusters. In summary, the REX survey will have the sensitivity and the area coverage to find the sites of earliest galaxy formation and will have the pixel size to enable good localization for follow up of individual galaxies with JWST and future telescopes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920V (2024) https://doi.org/10.1117/12.3017526
The extragalactic background light (EBL) is the integrated diffuse emissions from unresolved stars, galaxies, and intergalactic matter along the line of sight. The EBL is regarded as consisting of stellar emissions and thus an important observational quantity for studying global star formation history throughout cosmic time. Intensity and anisotropy in the near-infrared EBL as measured by the Cosmic Infrared Background ExpeRiment (CIBER), NASA’s sounding rocket experiment, and previous infrared satellites exceed the predicted signal from galaxy clustering alone. The objective of CIBER-2 is to unveil the EBL excess by observing it at extended wavelengths into the visible spectrum with an accuracy better than CIBER. The onboard instrument of CIBER2 comprises a 28.5-cm telescope cooled to 90K, and three HAWAII-2RG detectors coupled with dual-band filters for photometric mapping observations in six wavebands simultaneously and with linear variable filters for lowresolution spectroscopy. Although CIBER-2 made a successful first flight from White Sands Missile Range in New Mexico in 2021, technical problems such as contamination of thermal radiation from the rocket chassis and degradation of the mirror coat were recognized. Despite a successful second flight in 2023 solving the problems with the revised onboard instrument, the experiment was aborted because of trouble with the rocket tracking system. In this paper, we describe the parachute-recovered payload rebuilt after the second flight and the testing, and we report the successful flight on May 5th 2024.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920W (2024) https://doi.org/10.1117/12.3014708
We describe scientific objective and project status of an astronomical 6U CubeSat mission VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat). The scientific goal of VERTECS is to reveal the star-formation history along the evolution of the universe by measuring the extragalactic background light (EBL) in the visible wavelength. Earlier observations have shown that the near-infrared EBL is several times brighter than integrated light of individual galaxies. As candidates for the excess light, first-generation stars in the early universe or low-redshift intra-halo light have been proposed. Since these objects are expected to show different emission spectra in visible wavelengths, multi-color visible observations are crucial to reveal the origin of the excess light. Since detection sensitivity of the EBL depends on the product of the telescope aperture and the field of view, it is possible to observe it with a small but wide-field telescope system that can be mounted on the limited volume of CubeSat. In VERTECS mission, we develop a 6U CubeSat equipped with a 3U-sized telescope optimized for observation of the visible EBL. The bus system composed of onboard computer, electric power system, communication subsystem, and structure is based on heritage of series of CubeSats developed at Kyushu Institute of Technology in combination with high-precision attitude control subsystem and deployable solar array paddle required for the mission. The VERTECS mission was selected for JAXA-Small Satellite Rush Program (JAXA-SMASH Program), a new program that encourages universities, private companies and JAXA to collaborate to realize small satellite missions utilizing commercial small launch opportunities, and to diversify transportation services in Japan. We started the satellite development in December 2022 and plan to launch the satellite in FY2025.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920X (2024) https://doi.org/10.1117/12.3016614
The extragalactic background light (EBL) is the integrated emission from all objects outside of the Milky Way galaxy and is a crucial observational quantity in the broader study of the history of cosmic structures. In the nearinfrared EBL, there have been measurements of an emission component several times brighter than the cumulative light from extragalactic galaxies. This unknown radiation component has led to proposals for candidate source objects, such as first stars and galactic halo brown dwarfs. These source objects exhibit distinct radiation spectra in the visible wavelength. The VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat) project is focused on continuously observing the visible EBL using a wide-field small telescope on a 6U CubeSat. The primary characteristic of this telescope is its high-throughput (SΩ > 10−6 m2sr). The 3U-sized optical telescope onboard this satellite consists of a lens optics with a total field of view of 6° × 6°, pixel field of view of 11” × 11”, a highly sensitive and low-noise detector module, and a baffle to eliminate stray light from the Sun and Earth. Additionally, color filters divide the wavelength range from 400 to 800 nm into four bands. Our observation strategy involves capturing 60-second exposure images while shifting the observed field by 3° increments and stacking the acquired images to perform photometry in the four bands. Thus far, most of the telescope design has met the required specifications, and the project is currently advancing towards the production of an engineering model. This project was selected in the JAXA-SMASH and is currently progressing in satellite development with a planned launch in the 2025 fiscal year. In this presentation, we will report on the strategy for observing the visible EBL, the progress in the development of the optical telescope, and the future plans.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920Y (2024) https://doi.org/10.1117/12.3017780
GREX-PLUS (Galaxy Reionization EXplorer and PLanetary Universe Spectrometer) is one of the three candidates of ISAS/JAXA’s Strategic L-class mission for the 2030s. The 1.2 m aperture, 50 K cryogenic space telescope with the wide-field camera (WFC) will provide the 1,260 square arcmin field-of-view for five photometric bands between 2 and 8 μm. The high resolution spectrometer (HRS) will observe the 10–18 µm with a wavelength resolution of 30,000. The GREX-PLUS WFC field-of-view is 130 times larger than that of the James Webb Space Telescope and similar to those of Euclid and Roman Space Telescope. Since these two survey missions are limited to the wavelength less than around 2 µm, GREX-PLUS will extend the wavelength coverage beyond 2 μm, providing versatile legacy imaging survey significantly improved from previous Spitzer imaging survey in the same wavelength range. The spectral resolution of the GREX-PLUS HRS is 10 times higher than that of the James Webb Space Telescope, opening a new window of the mid-infrared high-resolution spectroscopy from space. The main scientific themes are the galaxy formation and evolution and the planetary system formation and evolution. The GREX-PLUS WFC aims to detect the first generation of “bright” galaxies at redshift z > 15. The GREX-PLUS HRS aims to resolve the Kepler motion of water vapor molecules and identify the location of the water “snowline” in ∼ 100 proto-planetary disks. Both instruments will provide unique data sets for a broad range of scientific topics including galaxy mass assembly, origin of super massive blackholes, infrared background radiation, molecular spectroscopy in the interstellar medium, transit spectroscopy for exoplanet atmosphere, planetary atmosphere in the Solar system, and so on. This paper presents the status of the concept design of GREX-PLUS, including telescope system, WFC, HRS, cooling system, and spacecraft bus system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130920Z (2024) https://doi.org/10.1117/12.3017865
SIRMOS (Satellite for Infrared Multi-Object Spectroscopy) is a SMEX mission concept to map the universe in 3D over a cosmic volume of ~ 500 cubic gigaparsecs using 131 million H-alpha and [OIII] emission line galaxies (optimal for tracing cosmic large-scale structure) at 1 < z < 4. SIRMOS will probe the cosmic origin by placing unprecedented constraints on primordial non-Gaussianity, advance fundamental physics by precisely measuring the sum of neutrino masses, and definitively differentiate dark energy and modification of general relativity as the cause for the observed low-redshift cosmic acceleration. SIRMOS will measure galaxy evolution before and during the peak era of cosmic star formation over three orders of magnitude in environmental density, from cluster cores to cosmic filaments. SIRMOS has a 50 cm aperture telescope with 1.6 square degree FoV, and more than 4.4 million micromirrors on 2 digital micro-mirror devices (DMDs) to provide a programmable reflective slit mask allowing multi-slit spectroscopy at R~1300 over the wavelength range of 1.25 to 2.5 microns and a total survey area of 15,000 square degrees. The telescope is a modified Cassegrain followed by a prism mirror that splits the field toward 2 identical arms. Fore-optics reimage each subfield onto a DMD. The micro-mirrors in ON positions send the light to a spectrograph while those in OFF positions send the light to an imager which permits very precise measurements of the telescope pointing and everything not selected for spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309210 (2024) https://doi.org/10.1117/12.3020273
Based on phase retrieval of defocused point source images from JWST commissioning, routine maintenance, and science data, we characterize components of the JWST OTE wavefront error variations over a wide range of time scales, including the accumulation of segment pose changes (tilt events) over days and weeks of typical wavefront control cycles, smooth drifts over hours and days, oscillation due to thermal cycling of the ISIM Electronics Compartment heaters with periods of a few minutes, and mechanical vibration modes with periods ~1 second and less. We extract the spatial and temporal forms of the detected WFE variations and explore correlation with relevant observatory telemetry data, including reaction wheel rotation speeds, IEC heater panel temperatures, and spacecraft attitude. This analysis extends the initial performance characterization during JWST commissioning and is intended to enhance the understanding and utility of JWST observations, as well as to provide more detailed in-flight characterization of optical stability for evaluation of integrated modeling and insight for the design and development of future observatories.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309211 (2024) https://doi.org/10.1117/12.3017688
The Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope affords the astronomical community an unprecedented space-based Multi-Object Spectroscopy (MOS) capability through the use of a programmable array of micro-electro-mechanical shutters. Launched in December 2021 and commissioned along with a suite of other observatory instruments throughout the first half of 2022, NIRSpec has been carrying out scientific observations since the completion of commissioning. These observations would not be possible without a rigorous program of engineering operations to actively monitor and maintain NIRSpec’s hardware health and safety and enhance instrument efficiency and performance. Although MOS is only one of the observing modes available to users, the complexity and uniqueness of the Micro-Shutter Assembly (MSA) that enables it has presented a variety of engineering challenges, including the appearance of electrical shorts that produce contaminating glow in exposures. Despite these challenges, the NIRSpec Multi-Object Spectrograph continues to perform robustly with no discernible degradation or significant reduction in capability. This paper provides an overview of the NIRSpec micro-shutter subsystem’s state of health and operability and presents some of the developments that have taken place in its operation since the completion of instrument commissioning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Tyler Baines, Néstor Espinoza, Joseph Filippazzo, Kevin Volk, Aarynn Carter
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309212 (2024) https://doi.org/10.1117/12.3020330
The Near Infrared Imager and Slitless Spectrograph (NIRISS) with its Single Object Slitless Spectrograph (SOSS) mode is a key instrument of the James Webb Space Telescope (JWST). This mode is optimized for exoplanet spectroscopy and time series observations of bright stars with J-band Vega magnitudes between 7 and 15 covering a broad wavelength range from 0.6 to 2.8 µm with a moderate spectral resolution (R ≈ 700 at 1.25 µm). In this work, we showcase some of the key efforts by the NIRISS/SOSS team to mitigate some unique aspects of this instrument. These include studying and predicting trace and wavelength solution movements as a function of small, visit-to-visit pupil wheel position variations, spectral extraction with spectral overlap, dispersed zodiacal light contamination, among others. We highlight the implementation of solutions to these challenges through publicly available code, as well as its integration into the JWST Calibration Pipeline. As more SOSS mode data becomes available and the instrument calibration improves, we continuously update observational resources and tools to help users optimize their science observations. We are committed to providing the community with advanced tools, code, and data models to aid in observational planning and data reduction, ensuring robust, science-grade data products through both the JWST calibration pipeline and user-developed pipelines.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309213 (2024) https://doi.org/10.1117/12.3018791
Twinkle is one of the first in a series of innovative science satellites managed and operated by Blue Skies Space Ltd. The satellite design is based on a high-heritage Airbus platform, with a spectrometer designed by ABB Canada. The spacecraft will carry a 0.45 m telescope and a spectrometer that covers wavelengths from 0.5–4.5 𝜇m simultaneously. Placed in a thermally-stable, sun-synchronous, low-Earth orbit, the mission will operate for seven years and conduct large-scale survey programs. The first three years will focus on both Solar System and Extrasolar targets. This paper presents the satellite’s updated design, and key science themes developed by the Twinkle surveys’ members.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309214 (2024) https://doi.org/10.1117/12.3020633
The Pandora SmallSat is a NASA flight project designed to study the atmospheres of exoplanets. Transmission spectroscopy of transiting exoplanets provides our best opportunity to identify the makeup of planetary atmospheres in the coming decade, and is a key science driver for HST and JWST. Stellar photospheric inhomogeneity due to star spots, however, has been shown to contaminate the observed spectra in these high-precision measurements. Pandora will address the problem of stellar contamination by collecting long-duration photometric observations sampled over a stellar rotation period with a visible-light channel and simultaneous spectra with a near-IR channel. These simultaneous multiwavelength observations will constrain star spot covering fractions of exoplanet host stars, enabling star and planet signals to be disentangled in transmission spectra to then reliably determine exoplanet atmosphere compositions. Pandora will observe exoplanets with sizes ranging from Earthsize to Jupiter-size and host stars spanning mid-K to late-M spectral types. Pandora was selected in early 2021 as part of NASA’s inaugural Astrophysics Pioneers Program. Herein, we present an overview of the mission, including the science objectives, operations, the observatory, science planning, and upcoming milestones as we prepare for launch readiness in 2025.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309215 (2024) https://doi.org/10.1117/12.3020491
PLATO (PLAnetary Transits and Oscillations) mission is a space-based optical multi-camera photometer mission of the European Space Agency (ESA) to identify and characterize exoplanets and their hosting stars using two main techniques: planetary transit and asteroseismology. Selected as the M3 (third Medium class mission) of the ESA 2015-2025 Cosmic Vision program, PLATO is scheduled to launch end of 2026 and designed for 4 years of nominal observation. The PLATO spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems and the sun shield with attached solar arrays. The Payload Module consists of a highly stable optical bench, equipped with 26 optical cameras covering a global field of view of > 2232deg2. The PLATO spacecraft data is complemented by ground-based observations and processed by a dedicated Science Ground Segment. We describe the mission and spacecraft architecture and provide a view of the current status of development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
PLATO (PLAnetary Transits and Oscillations of stars)1 is the M3 class ESA mission dedicated to the discovery
and study of extrasolar planetary systems by means of planetary transits detection. PLATO Payload Camera
units are integrated and vibrated at CSL before being TVAC tested for thermal acceptance and performance
verification at 3 different test facilities (SRON, IAS and INTA). 15 of the 26 Flight Cameras were integrated,
tested and delivered to ESA for integration by the Prime between June 2023 and June 2024, with the remaining
flight units to be tested by the end of 2024. In this paper, we provide an overview of our serial testing approach,
some of the associated challenges, key performance results and an up-to-date status on the remaining planned
activities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309217 (2024) https://doi.org/10.1117/12.3020325
Leonardo SpA is leading an Italian Space Industry Team, funded by ASI, collaborating to the ESA mission PLATO program for the realization of the 26 telescopes, which will fly on a single platform, aimed to discover, observe and analyze the exoplanets. The mission is based on a challenging telescope design with peculiar optical performance to be assured at very low operative temperature (-80°C). The “large” number of telescopes, produced in high rate (up to 3 telescopes every 2 months), is quite unusual for the production of scientific payloads. It has imposed a change with respect the prototypical manufacturing and test approach, generally a few flight units for space equipment, addressing the implementation of smart and fast methodologies for aligning and focusing each telescope, based on simulation of the peculiar “as-built” data. The opto-mechanical design of the telescope has been optimized to implement an industrial approach for all the manufacturing, assembly, integration and test (MAIT) phases. The number, production rate and the performance results of the flight units so far delivered by Leonardo to the PLATO Consortium, are validating the selected design solutions and all the selected MAIT processes. All the units already delivered present very similar performance, full specs and very close to the theoretical design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309218 (2024) https://doi.org/10.1117/12.3018669
The Earth 2.0 (ET) space mission has entered its phase B study in China. It seeks to understand how frequently habitable Earth-like planets orbit solar-type stars (Earth 2.0s), the formation and evolution of terrestrial-like planets, and the origin of free-floating planets. The final design of ET includes six 28 cm diameter transit telescope systems, each with a field of view of 550 square degrees, and one 35 cm diameter microlensing telescope with a field of view of 4 square degrees. In transit mode, ET will continuously monitor over 2 million FGKM dwarfs in the original Kepler field and its neighboring fields for four years. Simultaneously, in microlensing mode, it will observe over 30 million I < 20.5 stars in the Galactic bulge direction. Simulations indicate that ET mission could identify approximately 40,000 new planets, including about 4,000 terrestrial-like planets across a wide range of orbital periods and in the interstellar space, ~1000 microlensing planets, ~10 Earth 2.0s and around 25 free-floating Earth mass planets. Coordinated observations with ground-based KMTNet telescopes will enable the measurement of masses for ~300 microlensing planets, helping determine the mass distribution functions of free-floating planets and cold planets. ET will operate from the Earth-Sun L2 halo orbit with a designed lifetime exceeding 4 years. The phase B study involves detailed design and engineering development of the transit and microlensing telescopes. Updates on this mission study are reported.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309219 (2024) https://doi.org/10.1117/12.3019171
MIRASET (Mid-IR Array Spectrometer demonstration for Exoplanet Transits) is an ultra-stable laboratory spectrometer. Its purpose is to demonstrate a novel approach for isolating mid-infrared spectral lines detected in the atmospheres of transiting planets orbiting M-stars. Certain combinations of these spectral lines could potentially indicate the existence of life on these planets. To achieve this objective, we employ a black body source as a calibration standard, which also mimics the emission of an M-star in our lab setup. The power range of the black body emission can be adjusted to emit the same power on the detectors as would be observed from Proxima Cen B and Trappist-1 if they were observed using space-based observatories like ORIGINS or specialized MIR exoplanet missions like MIRECLE. All major elements in the experiment at all relevant stages can be temperature controlled, from the detector package, spectrometer, to the photo diode that monitors the output of the black body source in the visible, thereby measuring the temperature on the Wien side of the BB curve, which yields a higher temperature to emission ratio than in the MIR, which is on the Rayleigh Jeans part of the curve. With this experimental setup we have demonstrated the ability to monitor the black body emission over about an hour with a photometric precision of about 2 ppm in the MIR. Over more than 6 hours of integration, the noise floor still remains well below 5 ppm, which is the requirement for the detection of important atmospheric lines from earth-like planets around M-stars (~5 ppm).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921A (2024) https://doi.org/10.1117/12.3016317
Ariel, part of the European Space Agency's (ESA) Cosmic Vision science program, is an innovative medium-class mission designed for atmospheric remote sensing of exoplanets. It is the first mission solely dedicated to investigating the atmospheres of more than 500 transiting exoplanets, ranging from gas giants to super-Earths, using a combination of transit photometry and spectroscopy. The mission's primary goal is to analyze these exoplanets' chemical composition and thermal structures, paving the way for large-scale, comparative planetology. Ariel is scheduled for launch in 2029 aboard Ariane 6.2. It will operate from an orbit around the Sun-Earth system's second Lagrange point. The mission has a nominal lifetime of four years, with the potential for a two-year extension. The spacecraft comprises two main modules: the Service Module (SVM) and the Payload Module (PLM). The SVM manages platform elements, including attitude control, power, data handling, and communication systems. The PLM incorporates an all-aluminium cryogenic telescope with two scientific instruments, the Ariel IR Spectrometer (AIRS) and the Fine Guidance System (FGS). The Operational Ground Segment consists of ground stations and the Mission Operation Centre (MOC) located at ESOC, responsible for the operations of the spacecraft and instruments. The Science Ground Segment (SGS) consists of the Science Operation Centre (SOC), located at ESAC, along with the Instrument Operations and Science Data Centre (IOSDC) provided by the Ariel Mission Consortium (AMC). The SGS will perform the science mission planning as well as processing of the data to generate the mission data products and provision of the Ariel mission archive for the user community. While ESA holds overall responsibility for Ariel, the Ariel Mission Consortium is responsible for the procurement of the payload units, as well as managing the IOSDC. This collaborative effort aims to unlock the mysteries of exoplanetary atmospheres and deepen our understanding of these distant worlds.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921B (2024) https://doi.org/10.1117/12.3019713
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Through the study of targets with a wide range of planetary parameters (mass, density, equilibrium temperature) and host star types the origin for the diversity observed in known exoplanets will be better understood. Ariel is an ESA Medium class science mission (M4) with a spacecraft bus developed by industry under contract to ESA, and a Payload provided by a consortium of national funding agencies in ESA member states, plus contributions from NASA, the CSA and JAXA. The payload is based on a 1-meter class telescope operated at below 60K, built all in Aluminium, which feeds two science instruments. A multi-channel photometer and low-resolution spectrometer instrument (the FGS, Fine Guidance System instrument) operating from 0.5 – 1.95 microns in wavelength provides both guidance information for stabilizing the spacecraft pointing as well as vital scientific information from spectroscopy in the near-infrared and photometry in the visible channels. The Ariel InfraRed Spectrometer (AIRS) instrument provides medium resolution spectroscopy from 1.95 – 7.8 microns wavelength coverage over two instrument channels. Supporting subsystems provide the necessary mechanical, thermal and electronics support to the cryogenic payload. This paper presents the overall picture of the payload for the Ariel mission. The payload tightly integrates the design and analysis of the various payload elements (including for example the integrated STOP analysis of the Telescope and Common Optics) in order to allow the exacting photometric stability requirements for the mission to be met. The Ariel payload has passed through the Preliminary Design Review (completed in Q2 2023) and is now developing and building prototype models of the Telescope, Instruments and Subsystems (details of which will be provided in other contributions to this conference). This paper will present the current status of the development work and outline the future plans to complete the build and verification of the integrated payload.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921C (2024) https://doi.org/10.1117/12.3018735
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to survey the atmospheres of known exoplanets through transit spectroscopy. The launch is scheduled for 2029. The scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband 0.5-7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully aluminium design to tolerate thermal variations to avoid impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m (the major axis), followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure hinges supports the primary mirror on one of the optical bench sides. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Critical Design Review; the fabrication of the structural and engineering models has started; some components, i.e., the primary mirror and its mounting system are undergoing further qualification activities. This paper aims to update the scientific community on the progress concerning the development, manufacturing and qualification activity of the ARIEL Telescope Assembly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921D (2024) https://doi.org/10.1117/12.3019926
AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission adopted in November 2020 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4-year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over 1000 exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are exoplanets made of? How do planets and planetary systems form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering 1.95-3.90 µm (CH0) and 3.90-7.80 µm (CH1) wavelength ranges with prism-based dispersive elements producing spectra of low resolutions R>100 in CH0 and R>30 in CH1 on two independent detectors. The spectrometer is designed to provide a Nyquist-sampled spectrum in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermo-mechanical design of the instrument functioning in a 60 K environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled to below 42 K. This overview will present updated information of phase C studies, in particular on the assembly and testing of prototypes that are highly representative of the future engineering model that will be used as an instrument-level qualification model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921E (2024) https://doi.org/10.1117/12.3019545
The FGS is one of two scientific instruments on board the ESA ARIEL space telescope, which ESA plans to launch in 2029. The aim of the mission is to characterize the atmospheres of several hundred different exoplanets. The FGS is an opto-electronic instrument – a photometer and a near infra-red spectrometer. Although FGS stands for Fine Guidance System, in fact it has two main goals: to deliver scientific data of observed exoplanets, precisely speaking, their atmospheres, and to support the spacecraft’s AOCS with very precise pointing and guiding towards observation objects. This paper presents an overview of the current FGS design and implementation. The instrument is in the middle step between successfully passed iPDR and upcoming iCDR. Up to now, the team successfully built a prototype of the instrument, and is working on the manufacturing of the engineering and engineering-qualification models.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921F (2024) https://doi.org/10.1117/12.3017657
The Ariel space mission will characterize spectroscopically the atmospheres of a large and diverse sample of hundreds of exoplanets. Targets will be chosen to cover a wide range of masses, densities, equilibrium temperatures, and host stellar types to study the physical mechanisms behind the observed diversity in the population of known exoplanets. With a 1-m class telescope, Ariel will detect the atmospheric signatures from the small, < 100 ppm, modulation induced by exoplanets on the bright host-star signals, using transit, eclipse, and phase curve spectroscopy. Three photometric and three spectroscopic channels, with Nyquist sampled focal planes, simultaneously cover the 0.5-7.8 micron region of the electromagnetic spectrum, to maximize observing efficiency and to reduce systematics of astrophysical and instrumental origin. This contribution reviews the predicted Ariel performance as well as the design solutions implemented that will allow Ariel to reach the required sensitivity and control of systematics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Exoplanet Imaging I: JWST, Roman, and Technology Roadmaps for HWO
The James Webb Space Telescope is the first segmented observatory in space to conduct, among other things, high-contrast direct observations of exoplanetary systems. Such observations are thus to date the more technically akin to the future reconnaissance of nearby habitable zones with the Habitable Worlds Observatory. While JWST coronagraphs are not sensitive to temperate telluric planets, mostly due to the absence of critical Deformable Mirrors that will fly on the Roman Coronagraph Instrument (CGI), their capabilities are have achieved a few milestones relevant to HWO. This paper is part of a series to be presented by the JWST Telescope Scientist Team, JWST-TST. A common theme of these investigations is the desire to pursue and demonstrate science for the astronomical community at the limits of what is made possible by the exquisite op- tics and stability of JWST. The high-contrast programs of TST were crafted to rapidly advance knowledge of high-contrast strategies and best practices with JWST early in the mission. In this paper, we summarize our results and discuss their implications for the ongoing HWO architecture formulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Coronagraph Instrument on the Nancy Grace Roman Space Telescope is a critical technology demonstrator for NASA’s Habitable Worlds Observatory. It recently successfully completed all the required instrument-level functional, environmental, and performance tests. This paper will review the coronagraph instrument system, the final test results, and the plans for coronagraph integration with the Roman Space Telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921I (2024) https://doi.org/10.1117/12.3020514
In preparation for the operational phase of the Nancy Grace Roman Space Telescope, NASA has created the Coronagraph Community Participation Program (CPP) to prepare for and execute Coronagraph Instrument technology demonstration observations. The CPP is composed of 7 small, US-based teams, selected competitively via the Nancy Grace Roman Space Telescope Research and Support Participation Opportunity, members of the Roman Project Team, and international partner teams from ESA, JAXA, CNES, and the Max Planck Institute for Astronomy. The primary goals of the CPP are to prepare simulation tools, target databases, and data reduction software for the execution of the Coronagraph Instrument observation phase. Here, we present the current status of the CPP and its working groups, along with plans for future CPP activities up through Roman’s launch. We also discuss plans to potentially enable future commissioning of currently-unsupported modes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
NASA’s Habitable Worlds Observatory (HWO) mission is intended to search for biosignatures from ~25 exoplanets in the habitable zones of their host stars using a coronagraph instrument. This requires the coronagraph to directly detect and spectrally analyze photons from planets that are merely ~ 0.1 arcsec from the host star and ~ 10 billion times fainter. Achieving extreme contrast levels at extremely small angular separations is a daunting technological challenge. A working group of 50+ multi-institutional experts has been developing a first cut at a coronagraph technology roadmap to identify key technology gaps and enabling technology developments for HWO’s coronagraph instrument system. This paper will present a summary of the working group’s findings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921K (2024) https://doi.org/10.1117/12.3014539
NASA’s Habitable Worlds Observatory will consist of a segmented telescope and high contrast coronagraph to characterize exoplanets for habitability. Achieving this objective requires an ultra-stable telescope with wavefront stability of picometers in certain critical modes. The NASA funded Ultra-Stable Large Telescope Research and Analysis – Technology Maturation program has matured key component-level technologies in 10 areas spanning an “ultra-stable” architecture, including active components like segment edge sensors, actuators and thermal hardware, passive components like low distortion mirrors and stable structures, and supporting capabilities like precision metrology. This paper will summarize the final results from the four-year ULTRA-TM program, including advancements in performance and/or path-to-flight readiness, TRL/MRL maturation, and recommendations for future work.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921L (2024) https://doi.org/10.1117/12.3019067
The Deformable Mirror (DM) Technology Roadmap (DMTR) working group is a team tasked by NASA’s Exoplanet Exploration Program Office (ExEp) with studying the path to bring deformable mirror systems to a Technology Readiness Level (TRL) 5. It is operating jointly with Coronagraph Architecture Study and Coronagraph Technology Roadmap working groups to inform the newly formed Habitable Worlds (HabWorlds) Observatory (HWO) Technology Assessment Group (TAG) and Science, Technology, Architecture Review Team (START). DMs are the critical component of any exoplanet direct imaging coronagraph, and there is no device that exists today which can meet the ambitious requirements expected for HWO. The objective of the DMTR is to survey the field of DM technologies, define a baseline set of device requirements from which we can iterate on a development plan with vendors, and recommend a development and verification program. The purpose is to provide a more mature starting point for the future HWO technology development plans. To that end, the DMTR effort builds on the HabEx and LUVOIR decadal studies, as well as the flight development experience of Roman Coronagraph Instrument. The key deliverable is a general TRL development architecture, and assessments of cost, schedule, and risks for all vendors to the extent they are able to engage in the study. In this effort we consider the TRL of the DM as a system, meaning the device, drive electronics, and harnessing. This is an important distinction since TRL-5 is only achieved by demonstrating that the system meets performance requirements with a form and fit that matches a flight-worthy device subjected to relevant environments. Here we present progress on our development of validation plan for HWO DM system technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Exoplanet Imaging II: Towards the Habitable Worlds Observatory
This talk will discuss the science activities associated with these studies performed by the Science, Technology, and Architecture Review Team (START) for the Habitable Worlds Observatory, including the team and organization, and with a focus on identifying those key science drivers which inform trades that will lead to architecture choices as the mission enters the Pre-Phase A stage and beyond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921N (2024) https://doi.org/10.1117/12.3018328
NASA began the Great Observatory Maturation Program (GOMAP) with the goal of studying and advancing the Habitable Worlds Observatory (HWO), a large ultraviolet, optical, infrared space telescope recommended by the Astro 2020 Decadal Survey. Among its many goals, HWO will obtain spectra of at least 25 exo-Earth candidates to search for signs of life and conduct transformative astrophysics at ultraviolet, optical, and near-infrared wavelengths. The observatory, like HST and JWST, will be a powerful general class observatory. This past fall the GOMAP program stood up two study groups, the Science Technology Architecture Review Team (START) and the Technical Assessment Group (TAG) aimed at helping to study the science, technology and architecture options for this new flagship mission. This talk will discuss the engineering activities associated with these studies including the team and organization, the study plan and the use of the Concept Maturity Level (CML) approach. In addition, the talk will discuss the key initial engineering efforts, the key technology gaps, and overall engineering plans.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Modeling played a vital role on the James Webb Space Telescope (JWST) program. From early modeling to aid in requirements development to final verification and on-orbit performance determination, modeling evolved and grew as the program progressed. With the heavy reliance on modeling that large, complex missions like JWST has had and Habitable Worlds Observatory (HWO) will have, enabling accurate and timely modeling results as the design matures is extremely important. This paper will discuss the types of modeling necessary and the lessons learned during the development of JWST that are applicable to HWO.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921P (2024) https://doi.org/10.1117/12.3020583
The Habitable Worlds Observatory will have uniquely stringent wavefront stability requirements, in the single-digit picometers for observations lasting days, to preserve coronagraph contrast for imaging earth-like exoplanets. This need will be addressed using high-precision Wavefront Sensing and Control methods, including continuous picometerprecision metrology and control of the Optical Telescope Assembly (OTA). This paper reviews methods for initializing and maintaining the OTA wavefront, evolved from those used for the James Webb Space Telescope, but extended to much higher precision. It concludes by identifying performance targets for WFSC technology development, to help guide NASA technology investments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Matthew East, Peter Miller, Sean Brennan, Emily Lunde
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921Q (2024) https://doi.org/10.1117/12.3020201
The Astro2020 Decadal Survey recommends an ambitious mission named Habitable Worlds Observatory (HWO) to explore the universe and search for life on exoplanets. HWO builds upon NASA investments, including the James Webb Space Telescope segmented optical system, Roman Space Telescope coronagraph, large mission concept studies, and technology development. Studies continue to drive our understanding of the HWO mission trade space and increase the readiness of relevant technologies. NASA’s Great Observatory Maturation Program (GOMAP) will explain how mission architecture decisions impact science yields and improve understanding of the boundaries and opportunities within the mission trade spaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Habitable Worlds Observatory will revolutionize our understanding of the universe by directly detecting biosignatures on extrasolar planets and allow us to answer the question if we are alone in the universe. To accomplish the tight science goals associated with this mission, the development of an ultrastable observatory with a coronagraphic instrument is necessary. The observatory itself may need to stay stable on the order of 10 picometers over a wavefront control cycle, orders of magnitude more stable than what is required on current space missions. The metrology to verify stability requirements must be roughly a factor of ten more stable. The ultrastable laboratory at NASA’s Goddard Space Flight Center has further stabilized its testbed to allow for dynamic measurements on diffuse and specular objects on the order of single picometers, and we are currently measuring drifts on the orders of tens of picometers over different temporal bands. This paper will discuss the mechanical updates to the testbed setup, the analysis performed on several test articles, and the path forward on the road to measuring achieving the required stability for Habitable Worlds Observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Exoplanet Imaging III: Emerging Technologies for Photonics and Detectors
Theoretical ideal coronagraph performance is achieved when the light from an exoplanet can be coherently decomposed into a linear combination of spatial modes indistinguishable from that containing starlight, and an orthogonal mode. The intensity in the exoplanet mode orthogonal from the stellar modes as a function of separation from the star represents theoretical ideal coronagraph performance. Here we introduce a photonic coronagraph architecture capable of achieving this near-ideal exoplanet throughput at small inner working angles. We will review progress at the NASA Jet Propulsion Lab on prototype hardware implementing this photonic coronagraph concept and discuss our progress at device calibration and closed-loop control required for a photonic coronagraph in a changing wavefront environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921T (2024) https://doi.org/10.1117/12.3020518
The Habitable Worlds Observatory (HWO) is the leading recommendation of the Astro2020 decadal survey. The HWO flagship, to be launched in the early 2040s, will directly survey 100 of the nearest stellar systems and their habitable zones with the goal of detecting and spectroscopically characterizing 25 potentially “Earth-like planets” (or “Exo-Earths”). Photonic-based technologies can substantially improve technical and science margins by improving coronagraphic efficiency for HWO. We present the architecture of a photonic-integrated circuit (PIC)-based coronagraph (“AstroPIC”), currently being studied as a near-infrared channel coronagraph that can be adopted as part of a suite of coronagraphs that could be deployed on the HWO. The PIC architecture miniaturizes a traditional coronagraph reducing the mass and volume of the coronagraph while providing an avenue to simply enhance the functionality, bandwidth coverage, and exoplanet yield of HWO by adopting a Mach-Zehnder Interferometric (MZI) mesh for photonic nulling. In this architecture we consider two cases: (1) a hybrid AstroPIC using a small number of modes (16-25) can still enhance exoplanet yields through complementary coronagraphic sensitivities to a traditional coronagraph, and (2) a full photonic chip AstroPIC that uses larger number of modes (400+) that can be operated as a stand-alone coronagraph that approaches the optimal coronagraph performance limit. We summarize recent experiments carried out at the Stanford photonic teststand which demonstrate key coronagraphic functionality including: (1) 1e-7 contrast (70 dB nulling) achieved with a simple PIC consisting of a 4-MZI mesh, (2) 8e-9 contrast (81 dB nulling) achieved with 6-MZI elements, and (3) a free-space coupling on chip of a beam demonstrating coronagraphic nulling and coronagraphic throughput of an off-axis source. We discuss the recent AstroPIC Cycle-1 tape-out which will enable additional coronagraphic demonstrations including deeper nulling and scaling to larger numbers of modes initiating a technology development process to mature PIC-based coronagraphy for inclusion into HWO.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Habitable Worlds Observatory (HWO) aims for high-contrast imaging of exoplanets, targeting 1e-10 contrasts. Current coronagraph designs fall short of the fundamental coronagraphic limit, providing an opportunity for increasing the science yield of HWO. Photonic integrated circuits (PICs) are in theory able to achieve the fundamental limit. However, manufacturing errors in PICs introduce modal crosstalk, degrading contrast. To address this, we use a traditional PIAACMC coronagraph as a pre-filter before injection into the PIC. The entire system is optimized for its coronagraphic performance. We show initial simulations of this hybrid coronagraph for unobscured and obscured telescope pupils, with a focus on circuit design and active tuning algorithms for the PIC.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High Contrast Imaging systems (HCIs) must simultaneously optimize contrast, throughput, inner working angle, and angular resolution. HCIs must also be resilient to residual wavefront errors (WFEs), which is achieved by coronagraph design (low sensitivity to WFEs), active control (WFEs are suppressed) and self-calibration (the contribution of WFEs to residual starlight is accurately known and numerically removed).
We establish a process for designing optimal HCIs considering resilience to WFEs, from which we derive fundamental performance limits in the presence of wavefront errors. We show that a discretized version of an optimal HCI system can be realized as a photonic nulling chip (PNC), an approach providing more design flexibility than is accessible with coronagraph masks. We demonstrate on-sky self-calibration capability with the PNC-based GLINT instrument at the Subaru Telescope, and discuss future developments for ground and space-based HCI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921W (2024) https://doi.org/10.1117/12.3020603
One of the primary science goals of the Habitable Worlds Observatory (HWO) as defined by the Astro2020 decadal survey is the imaging of the first Earth-like planet around a Sun-like star. A key technology gap towards reaching this goal are the development of ultra-low-noise photon counting detectors capable of measuring the incredibly low count rates coming from these planets which are at contrasts of ∼ 1 × 10−10. Superconducting energyresolving detectors (ERDs) are a promising technology for this purpose as, despite their technological challenges, needing to be cooled below their superconducting transition temperature (< 1K), they have essentially zero read noise, dark current, or clock-induced charge, and can get the wavelength of each incident photon without the use of additional throughput-reducing filters or gratings that spread light over many pixels. The use of these detectors on HWO will not only impact the science of the mission by decreasing the required exposure times for exo-Earth detection and characterization, but also in a wavefront sensing and control context when used for starlight suppression to generate a dark zone. We show simulated results using both an EMCCD and an ERD to “dig a dark zone” demonstrating that ERDs can achieve the same final contrast as an EMCCD in about half of the total time. We also perform a simple case study using an exposure time calculator tool called the Error Budget Software (EBS) to determine the required integration times to detect water for HWO targets of interest using both EMCCDs and ERDs. This shows that once a dark zone is achieved, using an ERD can decrease these exposure times by factors of 1.5–2 depending on the specific host star properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921X (2024) https://doi.org/10.1117/12.3017631
Deformable mirrors (DMs) are a critical technology to enable coronagraphic direct imaging of exoplanets with current and planned ground- and space-based telescopes as well as future mission concepts, such as the Habitable Worlds Observatory (HWO), which aims to image exoplanet types ranging from gas giants to Earth analogs. These missions set several requirements on the DMs such as large actuator count (≥96×96) and resolution smaller than 2.5 pm. This paper presents the first demonstration of single-picometer wavefront control utilizing a new high-resolution, vacuum-compatible DM electronics and a Zernike Wavefront Sensor for measurement. The controller can handle 2,040 actuators with 125 V maximum voltage with 20-bit resolution, resulting in voltage steps of 119 microvolts that allowed us to demonstrate 0.65 pm resolution of the DM surface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921Y (2024) https://doi.org/10.1117/12.3020242
Starlight suppression to levels of contrast of 1×10−10 with an internal coronagraph would allow for detection and spectral characterization of Earth-analogs. Many coronagraph architectures have been proposed to address this science case. Among them, the vector vortex coronagraph (VVC) stands out for its exquisite sensitivity especially at small angular separations. However, the VVC has yet to demonstrate 1×10−10 contrast in the laboratory. The limitation of VVCs with respect to the Lyot Coronagraph, which holds the contrast record, has been thought to be the vortex mask. Indeed, the mask fabrication imperfections limit how well the deformable mirrors can suppress starlight in the image during wavefront control. Furthermore, the polarization leakage inherent to the VVC has not been fully addressed as a source of incoherent light that limits this type of coronagraph’s performance. Our new experiments in the Decadal Survey Testbed confirm these suspicions. Here we present the results of these experiments with a comprehensive characterization of our two best VVC masks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130921Z (2024) https://doi.org/10.1117/12.3018037
We present the final results of the Apodized Pupil Lyot Coronagraph (APLC) on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, under NASA’s Strategic Astrophysics Technology program. The HiCAT testbed was developed over the past decade to enable a system-level demonstration of coronagraphy for exoplanet direct imaging with the future Habitable Wolds Observatory. HiCAT includes an active, segmented telescope simulator, a coronagraph, and metrology systems (Low-order and Mid-Order Zernike Wavefront Sensors, and Phase Retrieval camera). These results correspond to an off-axis (un-obscured) configuration, as was envisioned in the 2020 Decadal Survey Recommendations. Narrowband and broadband dark holes are generated using two continuous deformable mirrors (DM) to control high order wavefront aberrations, and low-order drifts can be further stabilized using the LOWFS loop. The APLC apodizers, manufactured using carbon nanotubes, were optimized for broadband performance and include the calibrated geometric aperture. The objectives of this SAT program were organized in three milestones to reach a system-like level demonstration of segmented-aperture coronagraphy, from static component demonstration to system-level demonstration under both natural and artificial disturbances. HiCAT is, to this date, the only testbed facility able to demonstrate high-contrast coronagraphy with a truly segmented aperture, as is required for the Habitable World Observatory, albeit limited to ambient conditions, corresponding to NASA’s Technology Readiness Level (TRL) 4. Results presented here include 6 × 10−8 (90% CI) contrast in 9% bandpass in a 360 deg dark hole with inner and outer working angles of 4.4λ/Dpupil and 11λ/Dpupil. Narrowband contrast (3% bandpass) reaches 2.4 × 10−8 (90% confidence interval). We first explore the open-loop stability of the entire system quantify the baseline testbed performance. Then we present dark hole stabilization using both high-order and low-order loops under both low-order and segment level drifts in narrow and broadband. We compare experimental data with that obtained by the end-to-end HiCAT simulator. We establish that current performance limitations are due to a combination of ambient conditions, detector and deformable mirrors noises (including quantization), and model mismatch.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309220 (2024) https://doi.org/10.1117/12.3018382
We have built a laboratory testbed called the Exoplanet Imaging System Testbed (EXIST) to develop future highcontrast imaging technologies. The main objective of the EXIST is the development of broadband coronagraph and wavefront control techniques. The EXIST is equipped with several fiber-coupled laser and broadband light sources to model star and planets. A spatial light modulator (SLM) is used to carry out the wavefront control in front of the coronagraph. We incorporated a variety of coronagraphic masks, including four-quadrant, eightoctant, and 12-sector phase masks. These masks exhibit second-, fourth-, and sixth-order starlight suppression properties, respectively. When combined with the wavefront control, higher-order coronagraphic masks provided better dark hole contrast. This paper reports on recent experimental results and prospects for future technological development at the EXIST.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309221 (2024) https://doi.org/10.1117/12.3020702
Directly imaging Earth-like exoplanets around Sun-like stars with the future Habitable Worlds Observatory (HWO) will require coronagraphic focal plane masks able to suppress starlight to the 1 × 10−10 contrast levels. Furthermore, to collect enough photons for broadband imaging and detection and to minimize the number of parallel channels for spectroscopic characterization, this level of contrast must be achieved across a 20% bandwidth. Scalar vortex coronagraphs show promise as a polarization-independent alternative to polarizationsensitive vector vortex coronagraphs, but still face chromatic limitations. New scalar vortex mask designs incorporate radial phase dimples to improve the broadband performance. We present initial manufacturing results of prototype masks of these designs including phase metrology and microscope images, in preparation for broadband chromatic characterization and starlight suppression measurements, to be taken on a high contrast imaging testbed. We also present a preliminary narrowband (2%) dark hole result achieving 1.8 × 10−8 average contrast from 3.5-10λ0/D on the High Contrast Spectroscopy Testbed at Caltech. This work aims to advance the technological maturity of scalar vortex coronagraphs as a viable option for consideration for HWO.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309222 (2024) https://doi.org/10.1117/12.3020654
The Space Coronagraph Optical Bench (SCoOB) is a high-contrast imaging testbed built to demonstrate starlight suppression techniques at visible wavelengths in a space-like vacuum environment. The testbed is designed to achieve <10−8 contrast from 3 − 10λ/D in a one-sided dark hole using a liquid crystal vector vortex waveplate and a 952-actuator Kilo-C deformable mirror (DM) from Boston Micromachines (BMC). We have recently expanded the testbed to include a field stop for mitigation of stray/scattered light, a precision-fabricated pinhole in the source simulator, a Minus K passive vibration isolation table for jitter reduction, and a low-noise vacuum-compatible CMOS sensor. We report the latest contrast performance achieved using implicit electric field conjugation (iEFC) at a vacuum of ∼10−6 Torr and over a range of bandpasses with central wavelengths from 500 to 650nm and bandwidths (BW) from ≪ 1% to 15%. Our jitter in vacuum is < 3 × 10−3λ/D, and the best contrast performance to-date in a half-sided D-shaped dark hole is 2.2 × 10−9 in a ≪ 1% BW, 4 × 10−9 in a 2% BW, and 2.5 × 10−8 in a 15% BW.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309223 (2024) https://doi.org/10.1117/12.3020835
We present simulated results for the Phase Induced Amplitude Apodization (PIAA)-Vortex coronagraph for on-axis telescope architectures. In previous studies, we demonstrated that the PIAA-Vortex coronagraph has the potential to overcome limitations on coronagraph performance for on-axis telescopes, and can maintain insensitivity to stellar angular diameters on the order of 0.1 λ/D at a contrast of 10−10. Here, we present designs for the PIAA-Vortex coronagraph optimized for a segmented, on-axis telescope aperture that creates a 10−10 - contrast, broadband dark zone with a 20% bandwidth and an inner working angle of 2.5 λ/D. These designs are part of ongoing modelling work. We show that the Earthlike exoplanet yield of the design presented here reduces the performance gap between on-axis and off-axis coronagraphy, and describe preliminary results which increase the throughput, aberration sensitivity, and overall yield of the coronagraph further. The PIAA-Vortex coronagraph will contribute to enabling consideration of obstructed telescope pupils for the Habitable Worlds Observatory, thereby taking advantage of previous NASA optical observatory heritage and potentially allowing for greater flexibility in observatory design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309224 (2024) https://doi.org/10.1117/12.3015089
With the commencement of the development of the Habitable Worlds Observatory, it is imperative that the community has an understanding of (1) the stability requirements for the observatory to inform the design and (2) the gains expected from post-processing to inform observing scenarios and science yield estimates. We demonstrate that a previously developed, photon-efficient dark-zone maintenance (DZM) algorithm, that corrects quasi-static wavefront error drifts by using only science images, is compatible with traditional post-processing techniques. Further, we augment the DZM algorithm to estimate the coherent and incoherent light separately and introduce three novel post-processing techniques that leverage the concurrent estimation of coherent and incoherent light. With the DZM algorithm implemented on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed at the Space Telescope Science Institute (STScI), artificial drifts are injected as a random walk on a set of deformable mirrors (DMs) and are corrected with DZM. An injected fake planet is recovered in post-processing using a variety of techniques, such as angular differential imaging (ADI), and three novel techniques presented in this paper: incoherent accumulated imaging (IAI), software-based coherent differential imaging (CDI), and coherent reference differential imaging (CoRDI). All post-processing techniques can recover an injected planet at the same contrast level as the dark-zone background contrast (∼ 8 × 10−8), and the ADI technique is shown to recover a 4 × 10−8 planet in a 8 × 10−8 dark zone. For a space-based observatory, this would mean that if the instrument can reach a contrast level, we can maintain it and recover a planet that is undetectable in a single frame.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309225 (2024) https://doi.org/10.1117/12.3019597
Direct detection of Earth-like exoplanets requires a high-contrast imaging system to suppress bright stellar light that prevents the detection. The wavefront sensing and control technique which is one component of the high-contrast imaging system can suppress stellar scattered light (speckles) caused by wavefront aberrations. However, deformation of the system due to temperature changes in space telescopes or atmospheric turbulence in ground-based telescopes cause speckles that fluctuate faster than the wavefront sensing and control. As the post-processing technique, the Coherent Differential Imaging on Speckle Area Nulling (CDI-SAN) method was proposed to suppress the fast-fluctuating speckles. We are conducting the laboratory demonstration of the CDISAN method using two types of experimental facilities. One of them is equipped with a deformable mirror and a field programmable gate array. In our initial laboratory demonstration, we achieved 10−8 level contrast. To achieve higher contrast, we are updating our facility. The other facility is equipped with a spatial light modulator (SLM). In this facility, the contrast was improved by 10−1 using the CDI-SAN method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309226 (2024) https://doi.org/10.1117/12.3020344
Stellar coronagraphs use closed-loop focal-plane wavefront sensing and control algorithms to create high-contrast dark zones suitable for imaging exoplanets and exozodiacal dust clouds around nearby stars. Model-based algorithms are susceptible to model mismatch, wherein a departure of the coronagraph's true optical characteristics from the assumed model causes reduced control loop performance. Here, we report on a collection of techniques, including prediction-error minimization, expectation-maximization, and maximum-likelihood estimation, for empirically tuning the wavefront control Jacobian matrix in a statistically rigorous fashion during closed-loop wavefront control operations. This mitigates model mismatch and recovers near-optimal control loop performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309227 (2024) https://doi.org/10.1117/12.3016774
This paper presents initial results from the ESA-funded “SUPPPPRESS” project, which aims to develop highperformance liquid-crystal coronagraphs for direct imaging of Earth-like exoplanets in reflected light. The project focuses on addressing the significant challenge of polarization leakage in vector vortex coronagraphs (VVCs). We utilize newly manufactured multi-grating, liquid-crystal VVCs, consisting of a two- or three-element stack of vortex and grating patterns, to reduce this leakage to the 10−10 contrast level. We detail the experimental setups, including calibration techniques with polarization microscopes and Mueller matrix ellipsometers to enhance the direct-write accuracy of the liquid-crystal patterns. The performance testing of these coronagraph masks will be conducted on the THD2 high-contrast imaging testbed in Paris.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309228 (2024) https://doi.org/10.1117/12.3021377
LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan’s fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2 μK-arcmin and a resolution of 0.5° at 100 GHz. Its primary goal is to measure the tensor-toscalar ratio r with an uncertainty δr = 0.001, including systematic errors and margin. If r ≥ 0.01, LiteBIRD expects to achieve a > 5σ detection in the ℓ = 2–10 and ℓ = 11–200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD’s scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD’s synergies with concurrent CMB projects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309229 (2024) https://doi.org/10.1117/12.3018635
LiteBIRD is a JAXA-led international project aimed to make high sensitivity measurements of the primordial B modes through cosmic microwave background (CMB) polarization observations. The Low-Frequency Telescope (LFT) is a modified crossed Dragone reflective telescope with a 18° × 9° field-of-view across the 34-161 GHz. To achieve the required observational sensitivity, the telescope’s sidelobe response must be characterized to high precision to minimize signal contamination systematic effects from galactic and foreground emission. We report on the development of LFT optical simulation models that include the reflector optics, optimized serrations, finite absorptivity baffling, and V-grooves, and characterize the LFT sidelobes accounting for multiple reflection and diffraction optical effects. We find that the implementation of triangular and cos2 shaped serrations on the primary and secondary reflectors are effective in reducing asymmetric sidelobe power fluctuations to ≤ 1.42×10−4 and ≤ 1.20 × 10−4, respectively, at 34 GHz at 5.5° ≤ θbeam ≤ 35° from the beam center. Without telescope baffling, the LFT optics show prominent direct sidelobe and diffuse triple reflection sidelobes with peak powers of ≤ −35.49 dB and ≤ −38.65 dB, respectively. It was found that implementing a finite absorptivity focal plane (FP) hood and forebaffle allows for effectively mitigating these sidelobes to ≤ −58.66 dB at 34 and 42 GHz for θ > 45° from boresight. Further including V-grooves in the optical simulation model, it was found that the V-grooves attenuate the far sidelobe power at El < −50° to ≤ −74.8 dB. All these far-sidelobe features are found to be below the LiteBIRD sidelobe knowledge requirement levels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Recent advancements in imaging the magnetic field in the interstellar medium (ISM) have been made using instruments like PILOT, NIKA2, and HAWC+. These instruments, operating in submillimeter and millimeter domains, have revealed that the magnetic field tends to be orthogonal to the filamentary structures in star-forming regions of the ISM. However, further observations with higher spatial resolution are needed to better understand the physical processes in these areas. An upgraded version of the BBOP instrument, initially developed for the SPICA mission, is proposed for future large aperture space observatories. This enhanced BBOP features three bolometer arrays sensitive to 100, 220, and 350-micron spectral bands. These silicon bolometers offer significantly improved sensitivity and polarimetric capabilities. Each pixel can detect two orthogonal polarization components, and the bolometer arrays operate at 50 mK with a differential read-out scheme. This allows simultaneous measurement of both total light intensity and polarization for each pixel. The presentation will cover the instrument's concept, design, estimated performance, and initial laboratory tests.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922B (2024) https://doi.org/10.1117/12.3013597
The HiZ-GUNDAM is a time-domain and multi-messenger astronomy mission by monitoring high-energy astronomical transient events such as gamma-ray bursts (GRBs). The HiZ-GUNDAM is designed to provide alerts of high-redshift GRBs with wide field X-ray monitors (WFXMs) and a co-onboard 30-cm optical and near-infrared telescope (NIRT) for immediate photometric follow-up observations. The HiZ-GUNDAM satellite automatically changes its attitude toward the discovered transient object, starts the follow-up observations with NIRT, and sends alert information including the detailed position, the apparent magnitude, and the photometric redshift of the transient object within one hour. This mission was selected as one of the mission concept candidates of the competitively-chosen medium-class mission of ISAS/JAXA. Aiming for launch in 2030s, conceptual studies of the satellite and onboard instruments are currently ongoing. The five-band simultaneous observation at 0.5-2.5 μm is realized by a beam splitter and a Kösters prism. The incoming beam is split into visible light (0.5-0.9 µm) and near-infrared light by the beam splitter, and visible light is received by an optical detector. The near-infrared light is additionally split into four bands (0.9-1.3 μm, 1.3-1.7 μm, 1.7-2.1 μm, and 2.1-2.5 μm, respectively) by the Kösters prism, and received by an infrared detector. The telescope, the beam-splitter, the Kösters prism, and the optical detector are cooled down to <200 K, and the infrared detector is additionally cooled down to <120 K by radiation cooling. All mirrors in the telescope are made of aluminum alloy to reduce alignment errors during cooling. In this presentation, we introduce the current status of the development of NIRT onboard HiZ-GUNDAM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Space Interferometry for Gravity Waves and Black Holes
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922C (2024) https://doi.org/10.1117/12.3019158
The study of the universe through gravitational waves will yield a revolutionary new perspective on the universe, which has been intensely studied using electromagnetic waves in many wavelength bands. A space based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 mHz to 1 Hz. A space based mission complements ground based gravitational wave observatories, which typically search for signals at higher frequencies. LISA is a space based gravitational wave mission. Telescopes are one of the technology contributions from NASA to the European Space Agency (ESA) for the Laser Interferometer Space Antenna (LISA) Mission. ESA adopted the LISA mission in January of 2024. We will describe the key requirements for the flight telescopes and summarize the current status of the technology development effort.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922D (2024) https://doi.org/10.1117/12.3019835
We present the Black Hole Explorer (BHEX), a mission that will produce the sharpest images in the history of astronomy by extending submillimeter Very-Long-Baseline Interferometry (VLBI) to space. BHEX will discover and measure the bright and narrow “photon ring” that is predicted to exist in images of black holes, produced from light that has orbited the black hole before escaping. This discovery will expose universal features of a black hole’s spacetime that are distinct from the complex astrophysics of the emitting plasma, allowing the first direct measurements of a supermassive black hole’s spin. In addition to studying the properties of the nearby supermassive black holes M87∗ and Sgr A∗ , BHEX will measure the properties of dozens of additional supermassive black holes, providing crucial insights into the processes that drive their creation and growth. BHEX will also connect these supermassive black holes to their relativistic jets, elucidating the power source for the brightest and most efficient engines in the universe. BHEX will address fundamental open questions in the physics and astrophysics of black holes that cannot be answered without submillimeter space VLBI. The mission is enabled by recent technological breakthroughs, including the development of ultra-high-speed downlink using laser communications, and it leverages billions of dollars of existing ground infrastructure. We present the motivation for BHEX, its science goals and associated requirements, and the pathway to launch within the next decade.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922E (2024) https://doi.org/10.1117/12.3019968
The Black Hole Explorer (BHEX) is a next-generation space very long baseline interferometry (VLBI) mission concept that will extend the ground-based millimeter/submillimeter arrays into space. The mission, closely aligned with the science priorities of the Japanese VLBI community, involves an active engagement of this community in the development of the mission, resulting in the formation of the Black Hole Explorer Japan Consortium. Here we present the current Japanese vision for the mission, ranging from scientific objectives to instrumentation. The Consortium anticipates a wide range of scientific investigations, from diverse black hole physics and astrophysics studied through the primary VLBI mode, to the molecular universe explored via a potential single-dish observation mode in the previously unexplored 50-70 GHz band that would make BHEX the highest-sensitivity explorer ever of molecular oxygen. A potential major contribution for the onboard instrument involves supplying essential elements for its high-sensitivity dual-band receiving system, which includes a broadband 300 GHz SIS mixer and a space-certified multi-stage 4.5K cryocooler akin to those used in the Hitomi and XRISM satellites by the Japan Aerospace Exploration Agency. Additionally, the Consortium explores enhancing and supporting BHEX operations through the use of millimeter/submillimeter facilities developed by the National Astronomical Observatory of Japan, coupled with a network of laser communication stations operated by the National Institute of Information and Communication Technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922F (2024) https://doi.org/10.1117/12.3019010
The Black Hole Explorer (BHEX) mission will enable the study of the fine photon ring structure, aiming to reveal the clear universal signatures of multiple photon orbits and true tests of general relativity, while also giving astronomers access to a much greater population of black hole shadows. Spacecraft orbits can sample interferometric Fourier spacings that are inaccessible from the ground, providing unparalleled angular resolution for the most detailed spatial studies of accretion and photon orbits and better time resolution. The BHEX mission concept provides space Very Long Baseline Interferometry (VLBI) at submillimeter wavelengths measurements to study black holes in coordination with the Event Horizon Telescope and other radio telescopes. This report presents the BHEX engineering goals, objectives and TRL analysis for a selection of the BHEX subsystems. This work aims to lay some of the groundwork for a near-term Explorers class mission proposal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922G (2024) https://doi.org/10.1117/12.3019589
The Black Hole Explorer (BHEX) is a space very-long-baseline interferometry (VLBI) mission concept that is currently under development. BHEX will study supermassive black holes at unprecedented resolution, isolating the signature of the “photon ring” — light that has orbited the black hole before escaping — to probe physics at the edge of the observable universe. It will also measure black hole spins, study the energy extraction and acceleration mechanisms for black hole jets, and characterize the black hole mass distribution. BHEX achieves high angular resolution by joining with ground-based millimeter-wavelength VLBI arrays, extending the size, and therefore improving the angular resolution of the earthbound telescopes. Here we discuss the science instrument concept for BHEX. The science instrument for BHEX is a dual-band, coherent receiver system for 80-320 GHz, coupled to a 3.5-meter antenna. BHEX receiver front end will observe simultaneously with dual polarizations in two bands, one sampling 80-106 GHz and one sampling 240-320 GHz. An ultra-stable quartz oscillator provides the master frequency reference and ensures coherence for tens of seconds. To achieve the required sensitivity, the front end will instantaneously receive 32 GHz of frequency bandwidth, which will be digitized to 64 Gbits/sec of incompressible raw data. These data will be buffered and transmitted to the ground via laser data link, for correlation with data recorded simultaneously at radio telescopes on the ground. We describe the challenges associated with the instrument concept and the solutions that have been incorporated into the baseline design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
L. Conversi, J. Licandro, M. Delbo, A. Fitzsimmons, K. Muinonen, T. Müller, M. Popescu, P. Tanga, R. Moissl
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922H (2024) https://doi.org/10.1117/12.3018505
The Near-Earth Object Mission in the Infra-Red (NEOMIR) is the first ESA’s space-based mission fully dedicated to discovering near-Earth objects (NEOs), with a focus to detect and raise early warning for the smaller objects that are coming from the Sun direction, thus nearly impossible to be detected by ground-based optical survey. NEOMIR is currently in the early phases of mission study (phase A), with a potential launch date in the early 2030s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922I (2024) https://doi.org/10.1117/12.3020705
The COronal Diagnostic EXperiment (CODEX) is a Heliophysics mission to measure the density, temperature, and velocity of the electrons in the solar corona with the primary goal of improving our understanding of the physical conditions of the solar wind in the acceleration region. The temperature and velocity measurement requires much higher signal-to-noise ratio than the density measurements. In solar coronagraphs, the diffraction of the solar disk light due to the occulting element is the dominant source of noise. Therefore, to further suppress the diffracted sun light with respect to the existing coronagraphs is a critical element of the CODEX design. To minimize the stray light due to diffraction, the selected optical design is a two-stage standard coronagraph with an external occulter, an internal occulter, and a Lyot stop. What is unique for this design is that a focal mask was inserted at the telescope focal plane. It works together with the field lens suppressing the stray light down by ~ another order of magnitude as compared to a traditional three-stage approach. During the optical design, a Fourier Transform based beam propagation software, i.e., GLAD, was used to model the beam path through the full coronagraph, from the external occulter to the detector array. All diffraction sensitive elements: external occulter, internal occulter, focal mask, and Lyot stop were carefully modeled and optimized. As a result, the requirement of achieving a stray light level which is one order of magnitude lower than F-corona was satisfied. On the other hand, to achieve the final suppression, a precision optical alignment is another must. This paper also presents our creative alignment procedure: using the combination of metrology, precision alignment equipment, and real time diffraction ring monitoring to minimize the diffraction. The final test results show that the suppression ratio (B/B0) reaches 10-11 level, which is equivalent to one order of magnitude lower than F-corona.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922J (2024) https://doi.org/10.1117/12.3018121
Understanding the origin of the Martian moons is the main objective of the JAXA MMX (Martian Moons eXploration) mission, that will be launched in October 2026. Among the 13 instruments composing the payload, MIRS is an infrared imaging spectrometer that will map the mineralogy and search for organic compounds on the moons’ surfaces. MIRS will also study the Martian atmosphere, focusing on the spatial and temporal variations of water, dust and clouds. MIRS is operating in the 0.9-3.6 μm spectral range with a spectral resolution varying from 22 nm to 32 nm. The field of view covers 3.3° whereas the instantaneous field of view is 0.35 mrad. This presentation will detail the design and present the end-to-end performance obtained during the final instrument test in a representative thermal environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Lunar Thermal Mapper (LTM) is a compact multi-band push-broom infrared radiometer on the NASA Lunar Trailblazer mission due to launch in 2024. The LTM optics consists of a fast (F1.5) 5-mirror diamond turned free-form system. The mirrors are machined from lightweighted aluminium blanks with integral mounting flexures. The system is assembled on an athermal aluminium optical bench to maintain alignment through the launch and under the challenging thermal environment of lunar orbit. With this novel optical system LTM achieves high resolution infrared imagery in a compact, low mass instrument. We present the design and model performance of the optics, details of the optomechanical design and manufacture, and results from AIT of an optical breadboard and LTM flight model instrument. As the LTM optical system is seeing reuse for future missions (such as MIRMIS on ESAs Comet Interceptor) we discuss the use of the LTM optical design with higher resolution detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922L (2024) https://doi.org/10.1117/12.3018410
Aim to Japan's participation in the Artemis program in the 2030s in mind, we pursue the feasibility studies of lunar telescope, including astronomical observations. Focusing on the meter-wavelength observations (observing frequency of lower than 50MHz), which cannot be observed in the harsh environments on the ground from the Earth, including the ionosphere and radio frequency interference, we have reported on conceptual design based on the results of our feasibility studies in Japan. The main scientific objectives we have studied so far are broadly covering the following three areas: astronomy and astrophysics, planetary science, and lunar science. In astrophysics, the observing frequency range of 1- 50MHz gives us an opportunity to observe the 21 cm global signal (spatial average temperature) from the Dark Ages, which is determined purely by cosmology and is not affected by first-generation star formation and cosmic reionization. In astronomy, it provides the images of the Milky Way galaxy at meter wavelengths. In planetary science, it will be possible to study the environments of exoplanets through 1) radio waves from auroras on gas giant exoplanets like Jupiter and 2) stellar radio-wave bursts. In lunar science, it has the potential to observationally study the lunar ionosphere, subsurface structure, and dust environment. At present, we plan the meter-wavelength interferometric array as lunar telescope, including the single-dish observations. In this paper, focused on the scientific requirements from cosmology, we will report the design concepts of Japanese lunar telescope project, including the advanced feasibility studies of antenna, receiver, signal chain and spectrometer that are compared as other studies in US, China and Europe. We named this project TSUKUYOMI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922M (2024) https://doi.org/10.1117/12.3018919
The Dark Ages Explorer (DEX) is the European initiative for a radio interferometry facility on the lunar far side. DEX will focus on performing neutral hydrogen cosmology observations, aiming to obtain the spatial power spectrum of density fluctuations throughout the history of the early Universe. DEX is planned to consist of a large number (≥1024) of planar antenna elements deployed onto the lunar surface around the landing site, providing a densely filled aperture. The antenna elements are arranged in a regular grid, making it possible to generate sky snapshots by using the efficiency of a spatial 2D Fourier transform for every frequency bin. This talk introduces the concept design of DEX, shows the expected performance of the array in the presence of lunar regolith and discusses current and future efforts in technology development that are required to realise this design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922N (2024) https://doi.org/10.1117/12.3020371
MoonLITE (Lunar InTerferometry Explorer) is an Astrophysics Pioneers proposal to develop, build, fly, and operate the first separated-aperture optical interferometer in space, delivering sub-milliarcsecond science results. MoonLITE will leverage the Pioneers opportunity for utilizing NASA’s Commercial Lunar Payload Services (CLPS) to deliver an optical interferometer to the lunar surface, enabling unprecedented discovery power by combining high spatial resolution from optical interferometry with deep sensitivity from the stability of the lunar surface. Following landing, the CLPS-provided rover will deploy the pre-loaded MoonLITE outboard optical telescope 100 meters from the lander’s inboard telescope, establishing a two-element interferometric observatory with a single deployment. MoonLITE will observe targets as faint as 17th magnitude in the visible, exceeding ground-based interferometric sensitivity by many magnitudes, and surpassing space-based optical systems resolution by a factor of 50×. The capabilities of MoonLITE open a unique discovery space that includes direct size measurements of the smallest, coolest stars and substellar brown dwarfs; searches for close-in stellar companions orbiting exoplanet-hosting stars that could confound our understanding and characterization of the frequency of Earth-like planets; direct size measurements of young stellar objects and characterization of the terrestrial planet-forming regions of these young stars; measurements of the inner regions and binary fraction of active galactic nuclei; and a probe of the very nature of spacetime foam itself. A portion of the observing time will also be made available to the broader community via a guest observer program. MoonLITE takes advantage of the CLPS opportunity to place an interferometer in space on a stable platform – the lunar surface – and delivers an unprecedented combination of sensitivity and angular resolution at the remarkably affordable cost point of Pioneers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
LuSEE Night is a low frequency radio astronomy experiment that will be delivered to the farside of the Moon by the NASA Commercial Lunar Payload Services (CLPS) program in early 2026. LuSEE Night is designed to characterize the galactic radio foreground with best-yet sensitivity and depth but will also measure solar, planetary, and other astrophysical sources. The payload system under contract and being developed jointly by NASA and the US Department of Energy (DOE) and consists of a 4 channel, 50 MHz Nyquist baseband receiver system and 2 orthogonal ~6m tip-to-tip electric dipole antennas. LuSEE Night will enjoy standalone operations through the lunar night, without the electromagnetic interference (EMI) of an operating lander system and antipodal to our noisy home planet. LuSEE Night will also be supported by a NASA-funded far-field calibration source, in the form of a lunar-orbiting radio transmitter that broadcasts a pseudo-random code sequence; LuSEE Night will correlate against the code and use the signal to calibrate antenna pattern and system spectral chromaticity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Mission Concepts and Technologies for Small Spacecraft
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922P (2024) https://doi.org/10.1117/12.3019278
The Pandora NASA Astrophysics Pioneers SmallSat mission employs a dual-channel observational approach, simultaneously utilizing visible photometry and infrared spectroscopy to assess stellar contamination of exoplanet transmission spectra. For the near-infrared spectroscopy Pandora will use a 2.5-micron cutoff Teledyne H2RG detector. The engineering design unit has undergone thermal-vacuum testing at Lawrence Livermore National Labs to characterize its performance under flight-like conditions. This paper provides an overview of testing conducted to date, shedding light on critical detector properties derived from subsequent analyses. Key parameters include read noise, gain, and saturation, offering insights into the detector’s capabilities and paving the way for enhanced data interpretation in the pursuit of unraveling the complexities within exoplanetary atmospheres.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922R (2024) https://doi.org/10.1117/12.3018839
CubeSpec is an ESA in-orbit-demonstration mission, based on a 12U CubeSat, targeting high-resolution optical astronomical spectroscopy of bright targets. It is developed and funded in Belgium and scheduled for launch early 2026. The CubeSpec payload consists of an off-axis Cassegrain telescope with a rectangular aperture filling the surface area of two CubeSat units, followed by a prism cross-dispersed echelle spectrograph folded behind the primary mirror of the telescope. The complete optical payload fits in approximately 6 units (∼12 x 20 x 30 cm) of the spacecraft. CubeSpec delivers a spectral resolution of R = 55 000 and covers the wavelength range from 420 to 620 nm. The optical design is sufficiently flexible to allow tuning it with minimum hardware changes to a wide range of spectral resolution and coverage. A fine-guidance system consisting of a piezo-actuated fine steering mirror and a fine-guidance sensor provide arcsec-precise centering of the source image on the slit of the spectrograph, cancelling out pointing errors and spacecraft jitter. In this contribution, we describe the optical and optomechanical design of the CubeSpec payload, and discuss the challenged imposed by the extremely compact size and the large temperature excursions endured during each orbit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922S (2024) https://doi.org/10.1117/12.3017965
KU Leuven’s CubeSpec mission is pioneering the use of a CubeSat platform for advanced space-based spectroscopy.1 This innovation is partly due to its payload electronics, which must be space-efficient and powerconscious. To achieve exceptional pointing accuracy, CubeSpec employs a High-Pointing Precision Platform (HPPP) that works in tandem with the onboard Attitude Determination and Control System (ADCS). The HPPP utilizes a Fine Steering Mirror (FSM), controlled by piezo actuators, to direct light precisely onto the spectrograph slit. The design incorporates a DC-DC boost converter and a linear amplifier to meet the highvoltage demands of the piezo actuators. The HPPP setup is controlled in a closed-loop system with a Fine Guidance Sensor (FGS), a CMOS detector, and strain gauges that provide real-time feedback. The spectrograph output is captured by the Science Detector, which is the same detector model as the FGS. Due to stringent time requirements, a Xilinx Zynq 7000 FPGA manages the detector readout. The payload processor can communicate with the OBC over a CAN bus employing the CubeSat Space Protocol. This paper outlines the current progression in the development of CubeSpec’s payload electronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922T (2024) https://doi.org/10.1117/12.3020184
A-DOT (Active Deployable Optical Telescope) is a payload prototype of a 6U deployable telescope operating in the visible from 400 to 800 nm with an aperture diameter of 300 mm. It aims to deliver diffraction-limited performance using on-board wavefront sensing (WFS) and active control (WFC). A-DOT is currently in the design phase. This paper presents the development of a deployable, single-segment, mechanical prototype. The deployable mirror segment is kinematically mounted to a monolithic flexure using three spherical contacts in a cup-grooveflat arrangement. Tip, tilt and piston (PTT) are controlled using linear, piezoelectric actuators at each contact and the mirror position measured using capacitive sensors. The prototype is packaged within the allowable CubeSat volume and uses space-compatible hardware in a non-magnetic design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922U (2024) https://doi.org/10.1117/12.3018042
In the search for life in our galaxy, and for understanding the origins of our solar system, the direct imaging and characterization of Earth-like exoplanets is key. In a step towards achieving these goals, the Superluminous Tomographic Atmospheric Reconstruction with Laser-beacons for Imaging Terrestrial Exoplanets (STARLITE) mission uses five CubeSats in a highly elliptical orbit as artificial guide stars to enable tomographic reconstruction of the atmosphere for extreme multi-conjugate adaptive optics (MCAO). Through the use of current and next-generation extremely-large ground-based telescopes, the STARLITE constellation at its ∼350,000 km apogee can provide brighter than -10 magnitude artificial guide stars from a 10 cm launching telescope in a sub-arcminute field of view for up to an hour. Careful selection and design of the ∼760 nm on-board laser will allow O2 detection and characterization of exoplanet atmospheres. At a size of 12U, each satellite weighs only 19 kg and utilizes mostly commercially available off-the-shelf components to keep costs per satellite around $2M. In this paper, we will present the satellite mission concept and early system design for the STARLITE constellation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922V (2024) https://doi.org/10.1117/12.3019433
The liquid crystal tunable filter (LCTF) is an optical bandpass filter whose transmitted wavelength can be electronically controlled. The device consists of several layers of the basic elements of polarizer - birefringent crystal (liquid crystal cells and/or quartz) - polarizer, i.e., a Lyot-filter. By changing the voltage applied to the liquid crystal (LC) cell, the phase difference of light in each layer can be controlled. Due to its multi-layer composition, the LCTF can transmit only light of any specific wavelength. The peak transmittance of the LCTF we developed is approximately 20–40%, with a band width (FWHM; full-width at half maximum) of 10–100 nm, depending on the wavelength. The device has no mechanical moving parts, is compact (37×37×<30 mm3 ), lightweight (<100 g), exhibits low power consumption, and can be utilized in a wide temperature range of 0 to 45 ◦C. Consequently, it is well-suited for multi-spectral or hyper-spectral imaging mounted on small satellites. In order to achieve high-precision observations in the space environment, we have implemented some technical improvements: (1) development of the liquid crystal (LC) cells, (2) endurance tests on LC cells under high temperature and high humidity conditions, (3) development of technology to stack LC cells, polarizers, and birefringent crystal plates in parallel using optical adhesive, (4) establishment of a calibration method that can correct the temperature dependence of the birefringence of liquid crystal and quartz, (5) development of a compact driver to control LCTFs using only electronic components that can be used in the space environment, (6) improvement of the switching speed of LCTF transmission wavelength, and (7) conducting radiation tests. Consequently, we have experience in conducting observations on orbit by five small satellites equipped with our LCTFs. Furthermore, we also present our patent for an optical arrangement to bring out the performance of LCTFs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922W (2024) https://doi.org/10.1117/12.3018645
During the last few years, one of our main research topics has been developing a new type of spectropolarimeter intended for space applications. Initially analyzed numerically, the instrument has a compact, stable design without rotating components. The entire Stokes vector can be determined in a single shot in a vast spectral range. The simulations proved that the modulation schemes that can be obtained for this instrument are close to the optimal form. The objective of the current research is the experimental validation of this instrument. Here, we present the first results for determining the instrumental matrix and the demodulation results for a series of polarization states. In conclusion, we present the possible further developments of that project.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922X (2024) https://doi.org/10.1117/12.3019640
We have developed a compact broadband infrared imaging Fourier transform spectrometer, referred to as the 2D FTIR, employing common path wavefront division phase-shift interferometry. The system comprises a 3-reflector point-topoint optical setup with overlapping paths, incorporating two free-form mirrors and a pair of 20 mm high and 40 mm wide planar mirrors. Initially, we establish a one-dimensional multi-slit object plane with spacing tailored to match the FPA detector pixel size, effectively preventing destructive interference. Through precise optimization of the parameters of the two free-form mirrors (Mirror 1: 4th-order Zernike polynomial; Mirror 2: 6th-order Zernike polynomial), we achieve precise beam collimation, reflection through a phase shifter, and subsequent refocusing onto the FPA detector. Utilizing a commercial uncooled bolometer camera with a resolution of 640x480 pixels and a pixel size of 17μm, we attain optimal performance across the 4-20μm wavelength range, coupled with a generous 6mm diameter field of view. The spectrometer boasts a remarkable wavenumber resolution of 2.7 cm-1, with R (λ=4μm) ≈ 1000, alongside a spatial resolution of 34μm. All components seamlessly fit within a 170x150x80 mm vacuum frame. The 2D FT-IR enables the acquisition of spectral maps post-image capture and offers a broad measurement wavelength range of 4-20 μm. After completion of development, we plan to employ it to study the generation mechanisms of cryogenically frozen organic matter simulating Titan's haze and to measure the low-temperature continuous spectral transmittance and refractive index of the GREX-PLUS spectroscopic components. Additionally, due to its high vibration resistance and compact design, we intend to deploy it as a spectrometer for compact satellites developed by JAXA. Lastly, it will serve as a pivotal test instrument for the PLANETS telescope, facilitating the evaluation of the telescope's resistance to atmospheric disturbances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922Y (2024) https://doi.org/10.1117/12.3020785
We present the concept for STARI: STarlight Acquisition and Reflection toward Interferometry. If launched, STARI will be the first mission to control a 3-D CubeSat formation to the few mm-level, reflect starlight over 10s to 100s of meters from one spacecraft to another, control tip-tilt with sub-arcsecond stability, and validate endto-end performance by injecting light into a single-mode fiber. While STARI is not an interferometer, the mission will advance the Technology Readiness Levels of the essential subsystems needed for a space interferometer in the near future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130922Z (2024) https://doi.org/10.1117/12.3021027
RAFTER (Ring Astrometric Field Telescope for Exo-planets and Relativity) is a TMA telescope concept aimed at astrometric missions, and providing a wide FOV and high optical response uniformity over an annular region around the optical axis. This paper describes and analyzes the process of miniaturization and implementation of this idea into a Cubesat for technology demonstration purposes, and to evaluate its feasibility by analysing the performance and challenging aspects of different designs, calculating their mechanical tolerances and thermal sensitivity. We outline the critical aspects of the payload that can be tested and optimized in the framework of a dedicated CubeSat mission, in order to demonstrate the enabling technological contributors crucial to the development of a future larger scale mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309231 (2024) https://doi.org/10.1117/12.3019460
The Visible Extragalactic background RadiaTion Exploration by CubeSat (VERTECS) is designed for observing Extragalactic Background Light(EBL). VERTECS mission requires attitude control stability better than 10 arcsec (1σ) per minute, pointing accuracy better than 0.1 deg, and the slew rate faster than 1 deg per sec. We discuss the software-in-the-loop (SIL) attitude simulator simulation to verify whether the current Attitude Determination Control System (ADCS) design and the planned orbit can meet the requirements for EBL observations. We simulate the attitude control system with the simulation software, taking into account the attitude control commands, the parameters of the ADCS hardware, and the expected attitude disturbances in the assumed orbit. This simulation shows the sequence of attitude maneuvers needed to meet the requirement. The simulation results indicate that the current observation sequence is feasible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309232 (2024) https://doi.org/10.1117/12.3016648
The extragalactic background light (EBL) is the integrated emission from out of our Galaxy.Its observation is crucial for revealing the history of star-formation from the early universe to the present epoch. Visible Extragalactic background RadiaTion Exploration by CubeSat (VERTECS) is a 6U astronomical satellite to observe the EBL in visible wavelength from 0.4 µm to 0.8 µm. To observe the EBL, a telescope with 11 lenses and a high-performance CMOS sensor are equipped within 3U volume. The remaining 3U comprises the bus section mainly based on the bus design previously developed at Kyushu Institute of Technology. This paper describes the design and verification processes of the structure and thermal model of the satellite to fulfill the interface and mission requirements. From a mission perspective, the precise attitude and orbit control system unit is mounted on the same interface plate as the telescope to meet stringent pointing stability requirements during observations. The purpose of the stiff design of this interface plate is to minimize structural deformation. Furthermore, integrating multiple external antennas with relatively large X-band and S-band communication units require effective routing harness management. Static stress analysis is performed under the quasistatic loading condition. In addition, modal analysis is also conducted to fulfill the strength and stiffness requirements of the launcher. A series of mechanical environmental tests (shock, random, and sinusoidal vibrations) have been conducted to verify the design and analysis results. The results showed that designed model can fundamentally withstand the launch environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309233 (2024) https://doi.org/10.1117/12.3017332
Extragalactic Background Light (EBL), the cumulative light from outside the galaxy, is a crucial observational target for understanding the history of the universe. We are developing a CubeSat; VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat) with a 6U size (approximately 10 × 20 × 30 cm), equipped with Solar Array Wings (SAW). Our mission is to conduct extensive observations of the visible EBL. The satellite is designed to operate in a sun-synchronous orbit at an altitude of 500-680 km (approximately 15 orbits per day) and observe the EBL on the shadow side to avoid stray light from the Sun and Earth. To observe EBL, a high-performance CMOS sensor, attitude control devices, and high-speed communication equipment X-band are essential. We should note that these components these components consume a significant amount of power. Therefore, some strategic operational plans are necessary to operate this CubeSat within the limited power resources. In addition, VERTECS needs to meet its mission requirements, conducting 10 observations, 4 data downlinks, and 1 command uplink within a day. We have constructed some operational scenarios utilizing attitude control and SAW to meet these requirements, and we also constructed a power budget simulation for VERTECS. In this presentation, we describe how we plan to operate VERTECS utilizing the subsystems and the results of the power simulation during the operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309234 (2024) https://doi.org/10.1117/12.3018966
The CEntral (field) Three-mirror Anastigmat (CETA) telescope is designed on the specifications of the proposed Theia mission, aiming at high precision differential astrometry over a large field, for exo-planetary system characterization and dark matter /dark energy search through the dynamics of star clusters. Usually, Three Mirror Anastigmat designs are either off-axis in terms of field, or decentered in terms of pupil. We propose a family of solutions using fully centred optics and a large on-axis field, at the expense of a non negligible central obscuration. We analyse in particular a 1 m class compact telescope, with 15 m effective focal length, i.e. suited to small pixel (4-6 $micro$m) CMOS detectors operating in the visible and near IR. Due to the underlying symmetry, the resulting optical response is quite good over a 14 arcmin radius field, and it is of special interest to astrometry applications. Also, manufacturing, alignment and calibration can be expected to benefit significantly; some basic aspects are preliminarily considered.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309235 (2024) https://doi.org/10.1117/12.3016887
JASMINE is a Japanese near-infrared space mission with the scientific objectives of ultra-high-precision astrometric observations of stars in the central region of the Galaxy and exploration of terrestrial exoplanets around M-type stars. To achieve these scientific objectives, we are developing a 36-cm aperture diffraction-limited telescope with an emphasis on ultra-low stable telescope structure. The telescope will be equipped with an infrared detector and a bandpass filter for the wavelength range of 1000-1600 nm. For the astrometry, the telescope will have a high optical performance: the Strehl ratio larger than 0.9 at near-infrared wavelengths and is required to have a stable image distortion of less than a few tens micro arcsec during a low Earth sun-synchronous orbital motion. The telescope has an axisymmetric Korsch-type optical system which is easy to be designed to have the high optical performance over a large field-of-view. We present the progress of the telescope optics design, optics alignment/adjustment procedures, and telescope optics evaluation and verification procedures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309236 (2024) https://doi.org/10.1117/12.3017299
Structural, Thermal and Optical Performance (STOP) analysis is performed to investigate the stability of the telescope to be onboard the Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE). In order to perform one of the prime science objectives, high-precision astrometric observations in the wavelength range of 1.0–1.6 µm toward the Galactic center to reveal its central core structure and formation history, the JASMINE telescope is requested to be highly stable with an orbital change in the image distortion pattern being less than a few 10 µas after low-order correction. The JASMINE telescope tried to satisfy this requirement by adopting two design concepts. Firstly, the mirror and their support structures are made of extremely low coefficientof-thermal-expansion materials. Secondly, their temperatures are highly stabilized with an orbital variation of less the 0.1 ◦C by the unique thermal control idea. Through the preliminary STOP analysis, the structural and thermal structural feasibility of the JASMINE telescope is considered. By combining the results of the structural and thermal design, its thermal deformation is estimated. The optical performance of the JASMINE telescope after the thermal deformation is numerically evaluated. It is found that the thermal displacement of the mirrors in the current structural thermal design produces a slightly large focus-length change. As far as the focus adjustment is adequately applied, the orbital variation of the image distortion pattern is suggested to become acceptable after the low-order correction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Mid- and Far-Infrared Mission Concepts and Technologies
This paper covers BAE/Ball’s 4 K Cryocooler, which is comprised of TRL 6-9 subassemblies and meets the needs of multiple future space missions. The 4 K Cryocooler is comprised of a hybrid Stirling Pre-Cooler and a J-T (Joule-Thomson) Cryocooler driven by the MACCE (Modular Advanced Cryocooler Control Electronics). The Stirling Pre-Cooler uses the BAE/Ball 2-stage SC-235C 2-stage cryocooler which has flown on the TIRS-1 and TIRS -2 NASA missions. The precooler provides cooling at 15-18 K to precool the J-T Cooler and around 65 K to intercept thermal system heat loads. The J-T Cryocooler uses the TRL 9 flight SC-235/TIRS compressor with reed valves with a J-T cold head (heat exchangers, plumbing, J-T valve, etc.) from the ACTDP TRL 6 Engineering unit that demonstrated cooling to 3.4 K. The MACCE electronics are TRL 8 and have been delivered for flight.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309238 (2024) https://doi.org/10.1117/12.3019632
We have developed a robust bandpass filter that is suitable for use in mid- and far-infrared cryogenic space telescopes using simple photolithography. The filter consists of Babinet complementary metamaterial mirrors, which are sub-wavelength holes on a silicon wafer with metalized rim and bottom, and non-metalized side wall. The mirrors work as a “Fabry-Perot interference” type bandpass filter and have a spectral resolving power of R~10. The central wavelength is tunable by adjusting the optical distance between the surface and the bottom. It has higher mechanical toughness compared to conventional metal mesh-filters because of the support of the silicon wafer. It also has higher resistance to thermal cycles compared to conventional multi-layer filters because of its simple structure. The central wavelength can be configured only by the sub-wavelength structure without changing the depth of the holes, so that monolithic filters with different central wavelengths at each position can be fabricated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309239 (2024) https://doi.org/10.1117/12.3019817
In the 1990s COBE/FIRAS showed that the CMB spectral energy distribution is close to a perfect blackbody with tiny departures, ΔI/I ≃ 10−5, referred to as spectral distortions, that encode information about the full thermal history of the Universe. High-precision spectroscopy of the CMB is one of the three themes identified by the ESA Voyage 2050 programme to explore the early Universe. The BISOU (Balloon Interferometer for Spectral Observations of the primordial Universe) project is a pathfinder of a future space mission dedicated to the absolute measurement of the CMB spectrum. With the instrument and sky models developed in [6], we examine the influence feasibility of detecting the y-distortion monopole (probing the hot gas in the Universe).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923A (2024) https://doi.org/10.1117/12.3020300
The Probe far-Infrared Mission for Astrophysics (PRIMA) contains two instruments: an imager (PRIMAGER) and a multi-band spectrometer (FIRESS). These two instruments require detector cooling to 100 mK and require parts of the optical train to operate at 1.0 K. From a base temperature of 4.5 K, provided by a JWST-like cryocooler, a 5-stage Continuous Adiabatic Demagnetization Refrigerator (CADR) will provide this cooling to both instruments. The PRIMA CADR is based on heritage parts from the Hitomi and the X-Ray Imaging and Spectroscopy Mission (XRISM) ADRs and from recent Strategic Astrophysics Technology (SAT)-developed hardware. The CADR will provide 700 microW of lift at 1.0 K and 9 microW of lift at 100 mK to meet the two instruments (PRIMAGER and FIRESS) cooling requirements with a factor of 2 margin. The CADR is designed to reject a maximum of 8 mW at the 4.5 K cryocooler heat sink. This paper will describe the CADR, its requirements, its operation, and its heritage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923B (2024) https://doi.org/10.1117/12.3018024
PRIMA is a cryogenically-cooled, far-infrared observatory for the community for the beginning of the next decade (∼2031). It features two instruments, PRIMAger and FIRESS. The PRIMAger instrument will cover the mid-IR to far-IR wavelengths, from about 25 to 260 µm. Hyperspectral imaging can be obtained in 12 medium-resolution bands (R ∼ 10, more precisely a linear variable filter) covering the wavelength range from 25 to 80 micrometers, and broad-band (R ∼ 4) photometric and polarimetric imaging can be carried out in four bands between 80 and 260 µm. PRIMAger’s unique and unprecedented scientific capabilities will enable study, both in PI and GO programs, of black hole and star-formation coevolution in galaxies, the evolution of small dust grains over a wide range of redshift, and the effects of interstellar magnetic fields in various environments, as well as opening up a vast discovery space with its versatile imaging and polarimetric capabilities. One of the most ambitious possibilities is to carry out an all-sky far-IR survey with PRIMAger, creating a rich data set for many investigations. The design of PRIMAger is presented is an accompanying paper (Ciesla et al., SPIE Astronomical Telescopes + Instrumentation 2024).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the space observatory architecture and mission design of the Single Aperture Large Telescope for Universe Studies (SALTUS) mission, a NASA Astrophysics Probe Explorer concept. SALTUS will address key far-infrared science using a 14-m diameter <45 K primary reflector (M1) and will provide unprecedented levels of spectral sensitivity for planet, solar system, and galactic evolution studies, and cosmic origins. Drawing from Northrop Grumman's extensive NASA mission heritage, the observatory flight system is based on the LEOStar-3 spacecraft platform to carry the SALTUS Payload. The 14-m M1 is an off-axis inflatable membrane radiatively cooled by a two-layer sunshield. The SALTUS 5-year mission lifetime is driven by a two-consumable architecture: the propellant system and the inflation control system. The Core Interface Module, a multi-faceted composite truss structure, provides a load path with high stiffness, mechanical attachment, and thermal separation between the Payload and spacecraft. The spacecraft maintains an attitude off M1's boresight with respect to the Sun line to facilitate the <45 K thermal environment. SALTUS will reside in a Sun-Earth halo L2 orbit. The instantaneous field of regard provides two continuous 20° viewing zones around the ecliptic poles resulting in full sky coverage in six months.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923D (2024) https://doi.org/10.1117/12.3019636
Theoretical calculations predict that high-resolution spectroscopy of H2O gas lines in the mid-infrared region is the most promising method to observationally identify the snow-line, which has been proposed as the critical factor separating gas giants from solid planets in the planetary formation process. This requires the spectroscopic observations from space with R = λ/Δλ ≥ 30, 000. For this purpose, we propose a mid-infrared (10-18 μm) high-resolution spectrometer to be onboard the GREX-PLUS (Galaxy Reionization EXplorer and PLanetary Universe Spectrometer) mission. We are developing "immersion grating” spectroscopy technology for high-resolution spectroscopy in space. We have chosen CdZnTe as a candidate for the optical material. We report the current status of the development of the CdZnTe immersion grating, including evaluation of its optical properties (absorption coefficient and refractive index) at cryogenic temperatures, development of an anti-reflection coating with a moth-eye structure for wide-wavelength coverage, and verification of machinability for grating production. We plan to make a prototype spectrometer to demonstrate the capability of the immersion grating with ground-based observations in the N-band (λ = 8–13 μm) and beyond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923E (2024) https://doi.org/10.1117/12.3019645
We are developing an Immersion Grating (IG) made of CdZnTe which is designed for a high-dispersion midinfrared spectrograph (10-18 μm, R = λ/Δλ ∼ 30, 000) to be onboard the next-generation infrared space telescope GREXPLUS (Galaxy Reionization EXplorer and PLanetary Universe Spectrometer). The adoption of an IG will reduce the spectrometer size to 1/n in length (1/n3 in volume, n: refractive index) compared to conventional diffraction gratings. In order to determine the absorption coefficient of the high-resistivity CdZnTe, we developed a new measurement system for transmittance in 10-18 μm with cryogenic common-path double beam optics equipped with filament lamp source inside the vacuum chamber, which enables accurate determination of the transmittance at the cryogenic temperature by considering the effect of the multiple Fresnel reflection at the sample surface. By the new transmittance measurement system, the CdZnTe sample can be cooled down to ~6 K by employing cooled long wavelength band pass filter (λ > 7 μm) to attenuate the peak emission of the filament lamp (λ ~ 2 μm). In the present paper, we report the results of transmittance measurement with high precision (δτ~0.03%) by our new equipment for the high-resistivity CdZnTe, and the absorption coefficient α of high-resistivity CdZnTe. By applying the value of refractive index n at T > 5.7 K reported recently, α was estimated to be 0.00225 cm-1 and 0.00036 cm-1 at T~300 K and ~12 K, respectively at λ~10 μm in wavelength. In contrast to low-resistivity CdZnTe, the obtained values for α of high-resistivity CdZnTe have shown only slight temperature dependence, and the absorption coefficient values were smaller than the requirement: α<0.01 cm-1 for the IG material. The high-resistivity CdZnTe was likely to be a candidate material of IG for GREX-PLUS high-resolution spectrograph..
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923F (2024) https://doi.org/10.1117/12.3019753
We’re developing an immersion grating made of CdZnTe designed for a high-dispersion mid-infrared spectrograph (10-18 μm, R = λ/Δλ ∼ 30, 000) to be onboard the next-generation infrared space telescope GREX-PLUS. The adoption of an immersion grating will reduce the spectrometer size to 1/n (1/n3 in volume, n: refractive index) compared to conventional diffraction gratings. To determine this absorption coefficient accurately, we need to take the effect of multiple reflection into account that depend on the refractive index. However, the accurate refractive index of CdZnTe (Δn < 10−4) at 10-18 μm below 20 K has not been measured yet. Therefore, we’re developing a measurement system of the refractive index at cryogenic temperatures in the mid-infrared range. We adopt the minimum deviation method in this system to measure the refractive index, measuring the apex and deviation angle of the prismatic sample of material to be measured. Here we give an overview of the measurement system, as well as preliminary results of the refractive index measurement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923G (2024) https://doi.org/10.1117/12.3017952
Euclid, the M2 mission of the ESA’s Cosmic Vision 2015-2025 program, aims to explore the Dark Universe by conducting a survey of approximately 14 000 deg2 and creating a 3D map of the observable Universe of around 1.5 billion galaxies up to redshift z ∼ 2. This mission uses two main cosmological probes: weak gravitational lensing and galaxy clustering, leveraging the high-resolution imaging capabilities of the Visual Imaging (VIS) instrument and the photometric and spectroscopic measurements of the Near Infrared Spectrometer and Photometer (NISP) instrument. This paper details some of the activities performed during the commissioning phase of the NISP instrument, following the launch of Euclid on July 1, 2023. In particular, we focus on the calibration of the NISP detectors’ baseline and on the performance of a parameter provided by the onboard data processing (called NISP Quality Factor, QF) in detecting the variability of the flux of cosmic rays hitting the NISP detectors. The NISP focal plane hosts sixteen Teledyne HAWAII-2RG (H2RG) detectors. The calibration of these detectors includes the baseline optimization, which optimizes the dynamic range and stability of the signal acquisition. Additionally, this paper investigates the impact of Solar proton flux on the NISP QF, particularly during periods of high Solar activity. Applying a selection criterion on the QF (called NISP QF Proxy), the excess counts are used to monitor the amount of charged particles hitting the NISP detectors. A good correlation was found between the Solar proton flux component above 30 MeV and the NISP QF Proxy, revealing that NISP detectors are not subject to the lower energy components, which are absorbed by the shielding provided by the spacecraft.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923H (2024) https://doi.org/10.1117/12.3020047
Euclid is a European Space Agency (ESA) wide-field space mission dedicated to the high-precision study of dark energy and dark matter. In July 2023 a Space X Falcon 9 launch vehicle put the spacecraft in its target orbit, located 1.5 million kilometers away from Earth, for a nominal lifetime of 6.5 years. The survey will be realized through a wide field telescope and two instruments: a visible imager (VIS) and a Near Infrared Spectrometer and Photometer (NISP). NISP is a state-of-the-art instrument composed of many subsystems, including an optomechanical assembly, cryogenic mechanisms, and active thermal control. The Instrument Control Unit (ICU) is interfaced with the SpaceCraft and manages the commanding and housekeeping production while the high-performance Data Processing Unit manages more than 200 Gbit of compressed data acquired daily during the nominal survey. To achieve the demanding performance necessary to meet the mission’s scientific goals, NISP requires periodic in-flight calibrations, instrument parameters monitoring, and careful control of systematic effects. The high stability required implies that operations are coordinated and synchronized with high precision between the two instruments and the platform. Careful planning of commanding sequences, lookahead, and forecasting instrument monitoring is needed, with greater complexity than previous survey missions. Furthermore, NISP is operated in different environments and configurations during development, verification, commissioning, and nominal operations. This paper presents an overview of the NISP instrument operations at the beginning of routine observations. The necessary tools, workflows, and organizational structures are described. Finally, we show examples of how instrument monitoring was implemented in flight during the crucial commissioning phase, the effect of intense Solar activity on the transmission of onboard data, and how IOT successfully addressed this issue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923I (2024) https://doi.org/10.1117/12.3018334
In this paper, we explore a way to extract the Zernike coefficients from low-resolution PSF images using a neural network model. The goal of this study is to obtain accurate reconstructions of instrumental responses even with under-sampled PSFs. We used the Python module POPPY to simulate a Newtonian telescope system with a primary mirror diameter of 1 meter and a secondary mirror diameter of 0.2 meter. PSFs were simulated over a wavelength range from 200 nm to 1000 nm. Detector sampling parameters included a pixel scale of 0.05 arcseconds/pixel and a 32x32 pixel grid. The ZerNet model was developed based on the Inception architecture. The input is a 32x32 pixel PSF image and the output is a set of Zernike coefficients. The model has three blocks of convolutional kernels of different sizes. These are combined and flattened, then pass through several layers of dense neurons before being activated by a hyperbolic tangent function to predict Zernike coefficients. The model was trained using the Adam optimizer with a learning rate of 0.001 over 40 epochs and a batch size of 64. The data was divided into three sets: training (70%), validation (20%), and test (10%). The ZerNet model showed good accuracy in predicting Zernike coefficients from PSF images. The accuracy improved with increasing wavelength, reaching 95.34% at 1000 nm. The PSF reconstruction error was measured using the Frobenius norm and showed a reduction in error with higher order Zernike coefficients. The model showed that the median error decreased with increasing order, proving that including higher order Zernike coefficients helps with PSF reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy and dark matter. Scientific objectives demand a pointing stability of few tens of milliarcseconds (mas), which is achieved using a Fine Guidance Sensor (FGS) that provides high-precision pointing information as input to the spacecraft Attitude and Orbit Control Subsystem (AOCS). During the Performance Verification Phase, a reconstruction of instantaneous attitude at high precision has been achieved by using science instruments in special operating modes. The pointing jitter derived from these observations is correlated with the FGS/AOCS reported attitude to evaluate consistency. A precision of 2-3 mas is achieved in the reconstructed attitude at 30 ms time resolution in the optical channel, and 3 seconds in the infrared channel. The observation design, data analysis techniques and reconstructed attitude jitter curves are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923K (2024) https://doi.org/10.1117/12.3020366
The Nancy Grace Roman Space Telescope project is NASA's next flagship astrophysics mission to study dark energy, dark matter, and exoplanets along with the innumerable topics that will be enabled by the infrared survey telescope's instruments. The Wide Field Instrument contains a focal plane of 18 newly developed Teledyne H4RG-10 HgCdTe detectors. Roman's focal plane completed its first system level thermal vacuum test at NASA Goddard in 2022, when an increase in dark current compared to component level testing was observed for several detectors. Roman chartered an anomaly review board (ARB) and in collaboration with Teledyne undertook a testing program to help identify possible root cause and select from Roman's spare inventory suitable replacement detectors for devices that had significantly degraded. A possible root cause was determined by the ARB along with recommendations for how to prevent further degradation. We summarize the initial observation of the detector anomaly, present the detector testing strategy to find suitable spares and provide evidence of root cause, share the general findings of the ARB, and show new data showing the improved dark current performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923M (2024) https://doi.org/10.1117/12.3018018
The SPHEREx satellite will survey the entire sky between 0.75 - 5.0 μm in over 100 wavelengths with spectral resolving power R = 35 to 130 to study cosmic inflation, the history of galaxy formation, and biogenic ices in the Milky Way. The instrument uses six HAWAII-2RG detectors and linear variable filters (LVF) that sort incoming photons into different wavelengths along one spatial direction of the detectors. To minimize the scattered light produced when sources outside of SPHEREx field of view land on the LVF mounting frame (also known as “dragon’s breath”), a scale model was tested to refine a double undercut edge design and coating recipe that halves the ghost size and reduces the ghost’ intensity by 10-fold. We present here the edge design, the scale model experiment, and the characterization of the ghost in the flight telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923N (2024) https://doi.org/10.1117/12.3018463
The Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) is an upcoming all-sky near-infrared spectroscopic survey satellite designed to address all three primary science goals of NASA’s Astrophysics Division. SPHEREx employs a series of Linear Variable Filters (LVFs) to create 102 spectral channels across the wavelength range of 0.75 to 5 µm, with spectral resolutions R between 35 and 120. This paper presents the spectral calibration setup used for SPHEREx and discusses the various challenges encountered during the measurement process. Ultimately, we demonstrate the spectral responses for all 25 million pixels in SPHEREx.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923O (2024) https://doi.org/10.1117/12.3021043
ARRAKIHS is an ESA mission dedicated to observing dwarf galaxies and stellar streams. Its objective will be to test the standard cosmological model, particularly regarding the nature of dark matter. It will use four telescopes operating in the visible and near infrared spectral ranges. As they will observe ultra-low brightness objects, an extreme level of stray light control is necessary. A large external baffle is necessary to prevent out-of-field light from entering the telescope, with an extreme stray light rejection down to 10-11. This paper will discuss the design of this baffle. We will present the design trade-offs, as different possible baffle architectures were considered. Ultimately, the selected architecture consists in developing one baffle for two telescopes, hence a total of two baffles are used on the payload. A multi-stage baffle is developed, in the heritage of the CoRoT baffle which is seen as one of the best ever designed. Moreover, we will discuss the reflections on the test setup which will be implemented for validating the design on a prototype.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923P (2024) https://doi.org/10.1117/12.3020496
We describe our technical approach to developing a space observatory to survey the large-scale distribution of neutral and ionized intergalactic gas during cosmological reionization (the landmark event of “Cosmic Dawn”) from 400 to 800 million years after the Big Bang. To look this far back in time at the large-scale distributions of ionized gases, we use wide-field, narrow-passband surveys for Lyman alpha light from individual galaxies red-shifted to the near-infrared. Wherever this light can be seen, it implies the presence of ionized gas. We are developing a large FOV (0.5-to-1.0-degree) instrument with plate scale on the order of 0.3”/pixel to obtain a comprehensive view of the reionization process over a representative volume of the early universe. To maximize science return, the Reionization Explorer (REX) will be placed in a high orbit. Through disciplined application of design-for-cost principles and a thorough searching for existing designs that can achieve our science objectives, we have developed what could be a game changing approach at advancing our understanding of the formation of the universe on a limited Small Explorer (SMEX) budget by leveraging existing telescope, instrument, and spacecraft designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Manufacturing, Optomechanical, and Electronics Technologies for Space Applications
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923R (2024) https://doi.org/10.1117/12.3018508
The James Webb Space Telescope’s (JWST) center of curvature optical bench (CoCOB) hexapod was repurposed to enhance NASA Marshall Space Flight Center’s X-Ray & Cryogenic Facility (XRCF) optical metrology capabilities. This upgrade unlocked higher test article load capacity and extended the allowable ranges of motion of the CoCOB hexapod. The hexapod was also coupled to a new long-stroke, linear motion axis to form a 7 degrees of freedom system and allow for high precision testing of larger diameter test articles. A 9 degrees of freedom motion system, consisting of a three-axis linear mount in an X-Y-Z configuration and a commercially available hexapod, was also designed to allow high resolution positioning of the focal plane instrumentation over a large range of motion. A modern control architecture and graphical user interface was developed for the CoCOB hexapod and additional motion stages to permit streamlined commanding and operation. This paper discusses the justification for re-using the CoCOB hexapod by highlighting its unique precision motion control capabilities in a high vacuum and optically clean environment. The design, key component selection, and environmental compatibility for each of the additional motion stages is presented along with testing results for achieved range, repeatability, and minimum step size performance for all motion axes. Finally, a summary of the motion control system architecture and its flexibility to address tomorrow’s optical metrology needs are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923S (2024) https://doi.org/10.1117/12.3019793
Sensors with repetitive non-destructive readout, which achieve a deep sub-electron noise have been established for high precision applications. The Depleted P-channel Field-Effect Transistor with Repetitive Non-Destructive Readout - so-called RNDR-DEPFET - provides an active pixel sensor on a fully depleted silicon bulk with the capability to collect, store and read out charge carriers within each pixel. The readout process takes place by shifting the collected electrons between two readout nodes within one pixel in order to enable statistically independent measurements. In a conventional mode like the rolling shutter operation, the collected electrons are removed after the desired number of readings has been reached. However, the active pixel concept enables a continuous or incremental sampling of the signal during charge collection in combination with a high level of parallelization, as well. In this mode, the charge collection and readout takes places simultaneously and electrons are just removed before the storing capacity of the readout node has been exceeded. After the working principle of RNDR-DEPFET detectors has been demonstrated on a 64×64 pixel sensor, a incremental readout mode with a high time resolution of single electron events is studied. A time resolution in the order of 300 μs for single electron detection is demonstrated, which significantly improves the capabilities for background rejection and detection of rare signals. The paper concludes with an evaluation of applications for light dark matter searches and astrophysical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923V (2024) https://doi.org/10.1117/12.3017236
Optimax Systems Inc. has manufactured thousands of coated optics for Space & Astronomy. This presentation will discuss recent advancements that have been made in filter, mirror and antireflection coatings for Space and Astronomical applications and their pivotal role in enhancing the performance and durability of spaceborne components. Optimax has a culture of collaborating with customers to solve engineering challenges and provide specialized solutions in advanced applications. In the presentation I will cover examples of the collaborative engineering that enabled advancement of challenging optical systems for Space and Astronomy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923W (2024) https://doi.org/10.1117/12.3020612
Cordierite materials can be used as a reflected optical surface for astronomical space and ground-based telescope due to their high rigidity and low CTE(Coefficient of Thermal Expansion) which is ±1.94×10⁻⁸ m/°C. Using Cordierite materials in astronomical telescopes requires polishing techniques to control quantitatively. Therefore, it is essential to study the material removal properties using Tool Influence Function (TIF), which plays an important role in improving optical performance. In this paper, we introduce the characteristics of the initial Tool Influence Function (TIF) on Cordierite and SiC substrates. As a result, a material removal coefficient of 22.38 was obtained for Cordierite, while SiC achieved a coefficient of 6.01. Additionally, the repeatability was 95.73% ± 1.98 for Cordierite and 89.74% ± 4.39 for SiC.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923Y (2024) https://doi.org/10.1117/12.3018255
Radio telescopes play a crucial role in studying the universe, enabling us to explore celestial phenomena and deepen our understanding of astrophysics. This paper proposes the utilization of light-weight foam material integrated with a reflective thin film as an alternative to traditional aluminium panels for radio telescopes. The proposed panel design is aiming for observations in the terahertz frequency range. Here we show preliminary results of the panel in surface accuracy/duration and reflectivity at 345 GHz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130923Z (2024) https://doi.org/10.1117/12.3018411
In the frame of an international R&D project, a team from Japan and Germany developed a replica process to manufacture a CFRP honeycomb mirror for visible application. The main target was to generate the optical surface with minimized effort to achieve a microroughness of better (1 – 2) nm RMS. This technology would enable the team to manufacture cost-effective mirrors for larger amounts, like for constellations. In this paper, we will present the recent results of this development and the finally achieved performance of a 300 mm light CFRP mirror. We will also present lessons learned for next steps of development to achieve such mirrors with an optical performance not only for microroughness but also for surface accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309240 (2024) https://doi.org/10.1117/12.3018655
Habitable Worlds Observatory (HWO) is the current concept of NASA’s next flagship mission on searching for signatures of life on planets outside our solar system. LISA, the Laser Interferometer Space Antenna and ESA’s flagship will detect gravitational waves with the help of a gigantic laser systems spanned by triangle of three satellites each 2,5 billion kilometers apart. Both missions have tremendous requirements on the stability in the picometer range of the materials for the optics, positioning mechanics and optical benches. ZERODUR® has a strong heritage for its extremely low coefficient of thermal expansion and its excellent homogeneity in the single digit ppb/K CTE range over the entire blank volume. At SCHOTT, several development programs are dedicated to fulfilling the requirements of future space telescope missions. Our glass-ceramic material has been analyzed with respect to the low CTE application temperature range and long-time stability. Several geometrical designs are considered to deliver the best trade between stability, stiffness and weight. This paper presents our material property and design results valuable to realizing picometer stability optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Time Series Observations: Science Data Processing and Simulations
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309243 (2024) https://doi.org/10.1117/12.3019036
ExoSim 2 is the next generation of the Exoplanet Observation Simulator (ExoSim), designed for spectrophotometric observations of transiting exoplanets from space, ground, and sub-orbital platforms. Implemented in Python 3, it uses object-oriented design principles, allowing extensive customization and extension. Featuring a modular architecture with Task classes, ExoSim 2 encapsulates simulation algorithms, providing flexibility and extensibility. The Signal class manages data in a structured cube format, incorporating temporal, spatial, and spectral dimensions, enabling accurate simulation of observational data across various conditions and instrument configurations. The workflow consists of three main steps: creating focal planes, producing subexposures, and generating non-destructive reads (NDRs). This structure optimizes computational efficiency and resource management, facilitating detailed simulations. ExoSim 2 has been validated against tools like ArielRad, demonstrating accuracy in photon conversion efficiency, saturation time, and signal generation. It has also been tested for instantaneous read-out and jitter simulation, confirming its robustness. Applied to the Ariel mission, ExoSim 2 simulates raw observational data, aiding in mission preparation, instrument design, and observational strategy optimization. Its adaptability makes it a valuable tool for various missions beyond Ariel. ExoSim 2 represents a significant advancement in exoplanet observation simulation, providing researchers with a powerful tool to enhance understanding of exoplanetary systems and optimize the use of observational resources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Time Series Observations: Detectors, Electronics, and Operations
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309245 (2024) https://doi.org/10.1117/12.3018251
Earth2.0 is a space telescope mission proposed by Chinese scientists to search for exoplanets. It is scheduled for launch in 2027 and will operate in orbit around the Earth-Sun Lagrange point L2 for a minimum of 4 years. The mission includes six 28cm aperture, 550 square degree transit telescopes and one 35cm aperture, 4 square degree microlensing telescope. The microlensing telescope is aimed at the core area of the Milky Way's arm, and is expected to discover approximately 1,000 cold and wandering planets within four years. Currently, the microlensing telescope is considering using Teledyne e2v's CCD290 as the detector, with a focal plane consisting of a 2*2 detector mosaic. To conduct preliminary technical verification, a CCD290 prototype camera was designed and CCD290 performance characterization tests were carried out. Additionally, specific experiments were conducted to study the impact of space radiationontheCCD290 detector's performance through proton displacement damage irradiation. Following cumulative doses of3.072*10 10 p/cm2 and 6.792*10 10 p/cm2 of 60MeV proton irradiation, dark current, dark current non-uniformity, and charge transfer efficiency tests were performed on the CCD290. The test results indicated that after annealing at room temperature for 4 days and at 50°C for 7 days, the CCD performance showed partial restoration, highlighting the necessity of regular annealing in orbit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309246 (2024) https://doi.org/10.1117/12.3018675
The PLATO mission, part of ESA’s Cosmic Vision program, is expected to be launched by 2026 and will focus on discovering exoplanets from gas giants down to small rocky planets. Equipped with telescopes and cameras, including 24 normal and 2 fast cameras, it mainly aims to find Earth-sized planets in the habitable zone of Sun-type stars. The Data Processing System, comprising DPUs and the ICU, manages payload operations, with an On-Board Control Procedures (OBCP) engine enhancing autonomy and flexibility. Written in OCL, OBCPs are independent procedures loaded into the ICU memory, enabling late-stage modifications and regular re-execution, reducing repetitive uploads and conserving bandwidth. In this paper, we present a brief overview of the OCL (On-Board Command) language and its features, as well as the capabilities and benefits of having OBCPs. We also describe the OBCP flight software environment and the OBCP engine implemented in the ASW, along with the features and capabilities of the OBCP for the PLATO mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309247 (2024) https://doi.org/10.1117/12.3019909
PLATO (PLAnetary Transits and Oscillations of stars) is the ESA’s third medium-class mission (M3), adopted in 2017 under the Cosmic Vision 2015-2025 program after selection in 2014. Set for launch in 2026 from French Guiana’s Kourou, its primary goal is to discover and provide an initial bulk characterization of diverse exoplanets, including rocky ones, orbiting bright solar-type stars. Operating from a halo orbit around L2, 1.5 million km from Earth, PLATO’s Payload consists of 26 telescopes (24 normal, 2 fast) capturing images every 25 seconds and 2.5 seconds, respectively. These work in tandem with the AOCS (S/C Attitude and Orbit Control System). Each camera comprises four CCDs, yielding 20.3 MP images—81.4 MP per normal camera and 2.11 gigapixels overall. The onboard P/L Data Processing System (DPS) handles this huge data volume, employing Normal and Fast DPUs along with a single ICU. The ICU manages data compression, overseeing the P/L through a SpaceWire network. This paper provides a comprehensive overview of the Instrument Control Unit’s (ICU) status following the rigorous performance test conducted on the Engineering Model (EM) and its evolution during the development phases of the Engineering Qualification Model (EQM) and Proto-Flight Model (PFM). The content delineates the outcomes derived from the extensive performance test executed on the Engineering Model (EM), detailing the meticulous activities undertaken during the Assembly, Integration, and Verification (AIT/AIV) processes of the EQM. Additionally, it explains the status of the Proto-Flight Model (PFM), offering insights into its development path.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309248 (2024) https://doi.org/10.1117/12.3020165
PLAnetary Transits and Oscillations of stars (PLATO) is a medium-class mission selected by ESA in the framework of the Cosmic Vision programme. The PLATO Instrument Control Unit (ICU) is responsible for the management of the scientific payload, the communication with the satellite on board computer, the acquisition of housekeeping and scientific data from the 26 PLATO cameras and their processing before the downloading to the satellite mass memory unit. The data produced by the cameras cannot be transmitted directly to ground as soon as they are acquired but an onboard pre-processing and compression is needed. While the pre-processing stage is in charge of the camera's Data Processing Units (DPUs), the compression is executed on board ICU. Due to the highly demanding science requirements, the compression must be rigorously lossless. In this paper we will review the overall ICU onboard data processing chain, from the DPUs to the satellite mass memory, presenting the compression strategies implemented in the ICU application software architecture, and the results of the performance test run on the ICU Engineering Model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309249 (2024) https://doi.org/10.1117/12.3018741
Ariel is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. It has been selected by ESA in March 2018 and adopted in November 2020 to be flown, then, in 2029. It is the first survey mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, in order to enable planetary science far beyond the boundaries of the Solar System. The Payload (P/L) is based on a cold section (PLM – Payload Module) working at cryogenic temperatures and a warm section, located within the Spacecraft (S/C) Service Vehicle Module (SVM) and hosting five warm units operated at ambient temperature (253-313 K). The P/L and its electrical, electronic and data handling architecture has been designed and optimized to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large set of unbiased observations to shed light and fully understand the nature of exoplanets atmospheres, retrieving information about planets interior and determining the key factors affecting the formation and evolution of planetary systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The ARIEL InfraRed Spectrometer (AIRS) instrument will be implemented on board of the ARIEL (Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey) space mission led by ESA, to study the atmosphere of exoplanets by providing low resolution spectrum of the observed targets over broad infrared wavelength range covering the [1,95-7,8] μm. The satellite will be launched by ARIANE 6 from Kourou in 2029 for a 4 years mission. AIRS is equipped with two integrated Focal Plane Assemblies (iFPA) each resulting of the assembly of two subsystem: the Focal Plane Array (FPA) and the Cold Front-End Electronic (CFEE). Each FPA is equipped with a detector H1RG from Teledyne whose cut-off wavelength had been tuned to fit the wavelength domain of interest. The CFEE is connected by a flex cable to the detector package and passively cooled between around 60K through the AIRS optical benches and the Optical Bench of the ARIEL payload. Two different structural models and four bread board models have been developed to validate and qualify the thermal and mechanical design and to validate the full electrical functional detection chain. The paper will describe all these models and the results obtained during the qualification campaign and the performance tests of the first iFPA model equipped with an eight micrometers cut-off detector. This paper describes also the dedicated cryostat and test benches developed, with associated safety, to check compliance with mission requirement at subsystem level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924C (2024) https://doi.org/10.1117/12.3017776
ARIEL (Atmospheric Remote-sensing InfraRed Large-survey) is the fourth medium-class mission (M4) of the European Space Agency, part of the Cosmic Vision program, whose launch is planned by late 2029. ARIEL aims to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, in both visible and infrared light. The scientific payload is composed by a reflective telescope having a 1m-class elliptical primary mirror, built in solid Aluminum, and two focal-plane instruments: FGS and AIRS. FGS (Fine Guidance System)3 has the double purpose of performing photometry (0.50-0.55 µm) and low resolution spectrometry over three bands (from 0.8 to 1.95 µm) and, simultaneously, to provide data to the spacecraft AOCS (Attitude and Orbit Control System). AIRS (ARIEL InfraRed Spectrometer) instrument will perform IR spectrometry in two wavelength ranges: between 1.95 and 3.9 µm (with a spectral resolution R > 100) and between 3.9 and 7.8 µm with a spectral resolution R > 30. This paper provides the status of the ICU (Instrument Control Unit), an electronic box whose purpose is to command and supply power to the AIRS warm front-end (as well as acquire science data from its two channels) and to command and control the TCU (Telescope Control Unit).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924D (2024) https://doi.org/10.1117/12.3017943
The ARIEL mission has the task of conducting a large, unbiased spectroscopic survey of exoplanets, in order to explore the nature of exoplanet atmospheres and interiors and, through this, the key factors affecting the formation and evolution of planetary systems in our galaxy. Ariel is composed of two scientific instrument: one is the FGS which provides the Fine Guidance System capabilities and in addition combines a VIS photometer and a NIR low resolution spectrometer. The other instrument is the Ariel IR Spectrometer (AIRS) which provides spectra with resolution between 30 and 100 on a spectral band between 1.95 and 7.8 micrometers. This paper will focus on the application SW of the Instrument Control Unit of the Ariel mission, which is in charge of controlling the AIRS instrument as well as the Telescope Control Unit (TCU), which controls the M2 Mirror Mechanism (M2M) and provides the temperatures of the Payload. In particular, we will discuss the design of the ASW and the development status of the SW. The Ariel ICU is based on a dual core Leon3-FT processor; the ASW is based on the space profile of the Multiprocessor version of RTEMS 6; we plan to use the multicore nature of the processor to separate the control functions from the data processing part (mainly compression). The ASW implements several standard PUS services, plus a set of instrument specific services for controlling the AIRS Detector Control Units (DCU) and the TCU. We will discuss the results of the coupling tests that have been performed to verify the communications between the ICU and the subsystems (DCUs and TCU), as well as between the ICU and the platform (using a dedicated Spacecraft Interface Simulator)
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Time Series Observations: Optics, Optomechanics, and Modeling
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924E (2024) https://doi.org/10.1117/12.3020466
A STOP (Structural, Thermal, Optical and Performance) analysis has been conducted on the camera units of the PLATO space mission. The analysis is devoted to the prediction of in-orbit performance metrics that could not be otherwise verified through direct testing. The analysis presented in this paper is restricted to the so-called “static cases” which provide a snapshot of a specified thermal condition. These are intended to evaluate the camera performance over the expected operational temperature range and at zero gravity. We hereby provide a description of the model, the requirements to be tested, the simulation strategy and the performance results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924G (2024) https://doi.org/10.1117/12.3018855
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission of ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm, and operating at cryogenic temperatures. The Ariel Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary, a parabolic recollimating tertiary and a flat folding mirror. The Primary mirror is a very innovative device made of lightened aluminum. Aluminum mirrors for cryogenic instruments and for space application are already in use, but never before now it has been attempted the creation of such a large mirror made entirely of aluminum: this means that the production process must be completely revised and fine-tuned, finding new solutions, studying the thermal processes and paying a great care to the quality check. By the way, the advantages are many: thermal stabilization is simpler than with mirrors made of other materials based on glass or composite materials, the cost of the material is negligeable, the shape may be free and the possibility of making all parts of the telescope, from optical surfaces to the structural parts, of the same material guarantees a perfect alignment at whichever temperature. The results and expectations for the flight model are discussed in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924I (2024) https://doi.org/10.1117/12.3021633
The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA's "Cosmic Vision" program. Its launch is scheduled for 2029. The mission aims to study exoplanetary atmospheres on a target of ∼ 1000 exoplanets. Ariel's scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 μm and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, all bare aluminum. To date, aluminum mirrors the size of Ariel's primary have never been made. In fact, a disadvantage of making mirrors in this material is its low density, which facilitates deformation under thermal and mechanical stress of the optical surface, reducing the performance of the telescope. For this reason, studying each connection component between the primary mirror and the payload is essential. This paper describes, in particular, the development, manufacturing, and testing of the Flexure Hinges to connect Ariel's primary Structural Model mirror and its optical bench. The Flexure Hinges are components already widely used for space telescopes, but redesigning from scratch was a must in the case of Ariel, where the entire mirror and structures are made of aluminum. In fact, these flexures, as well as reducing the stress due to the connecting elements and the launch vibrations and maintaining the alignment of all the parts preventing plastic deformations, amplified for aluminum, must also have resonance frequencies different from those usually used, and must guarantee maximum contact (tolerance in the order of a micron) for the thermal conduction of heat. The entire work required approximately a year of work by the Ariel mechanical team in collaboration with the industry.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924K (2024) https://doi.org/10.1117/12.3018333
Accurate assessment of the optical performance of advanced telescopes and imaging systems for astrophysical applications is essential to achieve an optimal balance between optical quality, system complexity, costs, and risks. In this paper, we introduce PAOS, an open-source code implementing physical optics propagation (POP) in Fresnel approximation and paraxial ray-tracing to analyze complex waveform propagation through both generic and offaxes optical systems, enabling the generation of realistic Point Spread Functions across various wavelengths and focal planes. Developed using a Python 3 stack, PAOS includes an installer, documented examples, and a comprehensive guide. It improves upon other POP codes offering extensive customization options and the liberty to access, utilize, and adapt the software library to the user’s application. With a generic input system and a built-in Graphical User Interface, PAOS ensures seamless user interaction and facilitates simulations. The versatility of PAOS enables its application to a wide array of optical systems, extending beyond its initial use case. PAOS presents a fast, modern, and reliable POP simulation tool for the scientific community, enhancing the assessment of optical performance in various optical systems and making advanced simulations more accessible and user-friendly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924L (2024) https://doi.org/10.1117/12.3019257
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the fourth medium-class mission (M4) of the ESA’s Cosmic Vision Program. Its launch is planned for 2029. Ariel will observe a large and well selected sample of transiting gas giants, neptunes and super-earths around a wide range of host star types, with the objective to study planetary atmospheres and to understand composition and evolving processes of the planetary systems. A Structural, Thermal, and Optical Performance (STOP) analysis is conducted at Payload level to estimate the thermo-elastic induced degradation of the system performance for a number of selected environmental load cases. In particular, this document presents the general approach followed and the results of the optical design analysis performed to predict the performance of the Ariel Telescope Assembly for the in-flight operational cases during Cycle C-1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Time Series Observations: Assembly, Integration, and Test Results
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924N (2024) https://doi.org/10.1117/12.3020616
The Focal Plane Assembly (FPA) in optics is the unit located at the focal plane position of the different optical instruments. Each FPA hosts the detectors on support structures and associated interfaces (I/Fs) as quasi-static mounts which assemble them with the rest of the mechanical parts of the instrument; the electronic I/Fs as the flexi-cables connecting each detector to the Front End Electronics (FEE); and the thermomechanical I/Fs as the Thermal Straps (TS) attaching these devices in order to dissipate their heat. Due to the critical repeatability aspect of the different models (QM, FM, FS) in the space missions, each FPA must be identical with stringent specifications, which includes strict opto-mechanical positioning tolerances. These very demanding metrological requirements only can be reached under a special industrialization of alignment processes and an automatic metrology verification thanks to a high-precision, high-performance non-contact vision dimensional measurement system with micrometric or even better accuracy. After the in-lab conditions assembly activities, a better alignment attending the acquired knowledge and lessons learned of past cases have been used to implement improvements into the alignment of new large FPAs for acceptance testing. The optical metrological performances verification carried out before and after the acceptance test campaign of FPAs has been successfully passed and several Flight Models (FMs) have been assembled by the AIV Team from the Spanish Instituto Nacional de Técnica Aeroespacial (INTA) following ECSS (European Cooperation for Space Standardization) policy, and have been delivered to ESA’s subcontractors for performing the formal acceptance processes at instrument level under increasingly tight schedule constraints.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Claudio Arena, Nicolas Gorius, Gianalfredo Nicolini, Alessio Aboudan, Jose L Alvarezb, Francesco Borsa, Giacomo Cherchi, Cydalise Dumesnil, Yves M.E Levillain, et al.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924O https://doi.org/10.1117/12.3020694
PLATO is a European Space Agency medium class mission, whose launch is foreseen for 2026. Its primary goal is to discover and characterize terrestrial exoplanets orbiting the habitable zone of their host stars. This goal will be reached with a set of 26 wide field-of-view cameras mounted on a common optical bench. The PLATO camera flight models (FMs) are being tested at three different test-houses, namely the Netherlands Institute for Space Research (SRON), Institut d'Astrophysique Spatiale (IAS) and Instituto Nacional de Técnica Aeroespacial (INTA). Here we present the results of autocompatibility testing obtained during cryogenic-vacuum tests campaigns on the PLATO Camera 'Normal' FMs. The autocompatibility testing aims to analyse possible interferences on the CCD readout signal due to camera operations. Camera operations that could be potential causes of interference are identified in the Thermal control system (TCS) heater lines pulses, and multiple CCD readouts (relevant for PLATO 'Fast' Cameras only).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924Q (2024) https://doi.org/10.1117/12.3020226
LEONARDO SpA is leading an Italian Space Industry Team, funded by ASI, collaborating to the ESA mission PLATO (PLAnetary Transits and Oscillation of stars). Its aim is the study of extrasolar planetary systems, with a focus on the discovery of exo-planets hosted by bright, nearby stars. PLATO is composed by 26 fully dioptric designed cameras, each composed of a telescope optical unit (TOU) and a focal plane array (FPA). The FPA is integrated with the TOU at ambient temperature by other Partners of the PLATO CAM-Team, although we determine the best image plane (BIP) of each TOU during test at cryo-vacuum operative conditions. This poses a metrology challenge at TOU manufacturing and testing facilities, with relatively high production rate of the flight units. At cold temperature (-80°C), the orientation and location of the FPA is found out as the BIP, meanwhile at ambient temperature, them are co-registered by using Hartmann masks. The results of this approach show a correspondence between the two analysis methods and give an input for subsequent FPA integration at PLATO CAM level.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924S (2024) https://doi.org/10.1117/12.3023918
PLATO (PLAnetary Transits and Oscillation of Starts) is the third medium class mission of ESA devoted to exoplanets detection and partial characterization together to the associated star activity evaluation through its astroseismology. It is consisting on 26 telescopes mounted on the same platform, 24 called ‘normal’ and composed of four full-frame CCDs and 2 ‘fast’ composed of four frame-transfer CCDs mounted on their respective focal plane assemblies (FPAs). For completing the detection chain, they are using their front-end electronics (FEE), being the optics and opto-mechanics of the telescope optical unit (TOU) the last element of the PLATO-CAMs. In the framework of the mission development, the PLATO-CAMs, after their proper alignment and assembly, are required to be calibrated and tested on simulated working conditions. INTA is one of the European institutions (together to IAS and SRON, in France and Netherlands, respectively), in which such telescopes testing and calibration is carried out by simulating the L2 conditions corresponding to the PLATO-CAMs working environment. In this paper, the setup preparation for PLATO-CAM calibration and testing details are reported on, including design, and fabrication of the different elements, all the ground support equipment (GSE) required for the PLATO-CAMs full characterization and performance evaluation. In addition, the results on the first model tested at INTA, the engineering model (EM) are summarized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924T (2024) https://doi.org/10.1117/12.3023922
The preparation of the different institutes (IAS, SRON and INTA at France, Netherlands and Spain, respectively) for being ready for testing the PLATO (Planetary transits and oscillation of starts) telescopes (PLATO CAMs) under working condition has been a long trip full of requirements updates and needs adaptation. For this ESA mission devoted to the Exoplanets detection and partial characterization together to the associated star activity evaluation through its astroseismology, 26 telescopes are going to be mounted on the same platform. There are 24 identical ‘normal’ and 2 ‘fast’ PLATO CAMs, all formed by four CCDs mounted on the focal plane assembly (FPA), the front end electronics (FEE) used for completing the detection chain, and optics and optomechanics that forms the telescopes optical unit (TOU). After their alignment and integration verification done at CSL, they are sent to the corresponding institute for running at the best focus temperature at which the telescope provides the best image the performance checks required for considering them properly characterized and ready to be installed in their final configuration at OHB. In this paper, a brief summary on the main details of the tests carried out at INTA on the PLATO CAM flight model (FM) number three are reported on. In addition, preliminary results obtained together to the rest of the consortium and related to the telescopes capabilities are included for the particular case of such first flight model tested at INTA.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924U (2024) https://doi.org/10.1117/12.3018650
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is ESA’s M4 mission of the “Cosmic Vision” program, with launch scheduled for 2029. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 µm, operating at cryogenic temperatures in the range 40–50 K. The Ariel Telescope is an off-axis, unobscured Cassegrain design, with a parabolic recollimating tertiary mirror and a flat folding mirror directing the output beam parallel to the optical bench. The secondary mirror is mounted on a roto-translating stage for adjustments during the mission. The mirrors and supporting structures are all realized in an aerospace-grade aluminum alloy T6061 for ease of manufacturing and thermalization. The low stiffness of the material, however, poses unique challenges to integration and alignment. Care must be therefore employed when designing and planning the assembly and alignment procedures, necessarily performed at room temperature and with gravity, and the optical performance tests at cryogenic temperatures. This paper provides a high-level description of the Assembly, Integration and Test (AIT) plan for the Ariel telescope and gives an overview of the analyses and reasoning that led to the specific choices and solutions adopted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924V (2024) https://doi.org/10.1117/12.3020185
In this proceeding, we present the development of the Optical Ground Support Equipment (OGSE) used for payload-level testing of the Ariel space mission. Ariel is an ESA mission that will use the transit spectroscopy method to observe the atmospheres of nominally ~1000 exoplanets. Ariel is a 1 m class cryogenic (∼ 40 K) space telescope that will be placed in a halo orbit around the Earth-Sun L2 point. To detect atmospheric molecular absorption features, Ariel will produce medium-resolution spectra (R ≥ 15) using three spectroscopic channels covering 1.1 – 7.9 μm as well as having photometric channels covering 0.5 – 1.1 μm. To achieve Ariel’s science goals, the payload requires detailed calibration and performance verification. The payload-level performance verification of the Ariel payload will take place in 2026 in a 5-meter vacuum chamber at the Rutherford Appleton Laboratory’s Space Instruments Test Facility. The payload will be enclosed in a Cryogenic Test Rig (CTR) to provide a space-like (~35 K) thermal environment and is illuminated by the OGSE. The OGSE provides point as well as extended source illumination across Ariel’s full wavelength range. The OGSE design also includes a series of mechanisms and features to enable the various illumination conditions required to test Ariel. Here we report design updates to the OGSE after a preliminary design review (PDR). Since PDR, there have been substantial revisions to the OGSE architecture. In this proceeding, we describe the evolution of the OGSE architecture. The updated OGSE design will then be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924W (2024) https://doi.org/10.1117/12.3018284
The future ARIEL Space Mission aims achieving a photometric precision down to the parts-per-million (ppm) level, over periods longer than ten hours. This required level of sensitivity is crucial to obtain valuable information about the properties of the exoplanet and its atmosphere. The Institute of Astrophysics and Space Sciences is responsible for the development of the visible and near-infrared (Vis-NIR) illumination sub-system, integrated in ARIEL’s Optical Ground Support Equipment (OGSE). This study presents an in-depth analysis of two main component of the Vis-NIR illumination sub-system: a Quartz Tungsten-Halogen (QTH) calibration light source and an extended Indium Gallium Arsenide (InGaAs) reference detector, tested under cryogenic conditions. It is shown that these two components are compliant with the ARIEL's requirements, allowing the mission to obtain spectroscopic and photometric time series with the stability needed to identify signal variations from 20 ppm to 100 ppm, over a 10-hour observation period.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Time Series Observations: Thermal Control and Space Environment
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130924Y (2024) https://doi.org/10.1117/12.3018298
The Atmospheric Remote-sensing InfraRed Large-survey (ARIEL) is a medium-class mission of the European Space Agency whose launch is planned by late 2029 whose aim is to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class primary mirror, built in solid aluminum, and two focal-plane instruments: 1. FGS (Fine Guidance System), performing photometry in visible light and low resolution spectrometry over three bands (from 0.8 to 1.95 µm) 2. AIRS (ARIEL InfraRed Spectrometer) that will perform infrared spectrometry in two wavelength ranges between 1.95 and 7.8 µm. This paper depicts the status of the TA (Telescope Assembly) electric section whose purpose is to deploy sensors, managed by the Telescope Control Unit, for the precise monitoring of the Telescope’s temperatures and the decontamination system, used to avoid the contamination of the optical surfaces (mirrors in primis).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309250 (2024) https://doi.org/10.1117/12.3017998
Ariel (Atmospheric Remote Sensing Infrared Exoplanet Large Survey) [1] [2] is the fourth Mission (M4) of the ESA’s Cosmic Vision Program 2015-2025, selected in March 2018 and officially adopted in November 2020 by the Agency, whose aim is to characterize the atmospheres of hundreds of diverse exoplanets orbiting nearby different types of stars and to identify the key factors affecting the formation and evolution of planetary systems. The Mission will have a nominal duration of four years and a possible extension of two years at least. Its launch is presently scheduled for mid 2029 from the French Guiana Space Centre in Kourou on board an Ariane 6.2 launcher in a dual launch configuration with Comet Interceptor. The baseline operational orbit of the Ariel is a large amplitude halo orbit around the second Lagrangian (L2) virtual point located along the line joining the Sun and the Earth-Moon system at about 1.5 million km (~236 RE) from the Earth in the anti-Sun direction. Ariel’s halo orbit is designed to be an eclipse-free orbit as it offers the possibility of long uninterrupted observations in a fairly stable environment (thermal, radiation, etc.). An injection trajectory is foreseen with a single passage through the Van Allen radiation belts (LEO, MEO and GEO near-Earth environments). This is approximated by a worst-case half orbit, prior the injection and transfer to L2, with a duration of 10.5 hours, a perigee of 300 km (LEO), an apogee of 64000 km (GEO and beyond), and an inclination close to 0 degrees. During both the injection trajectory and the final orbit around L2, Ariel will encounter and interact mainly with the Sun radiation and the space plasma environment. In L2 the Ariel spacecraft will spend most of its time in the direct solar wind and the Earth’s magnetosheath with passages through the magnetotail. These three environments, along with LEO and GEO, can lead to the build-up of a net electric charge on the spacecraft and payload conductive and dielectric surfaces leading to the risk of Electro Static Discharges (ESD), potentially endangering the whole Payload integrity and telecommunications to Ground.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
NIRCam Coronagraphy was declared ready for science in the early summer 2022. Several impactful science results have since been obtained using the NIRCam coronagraphs, mainly on known exoplanetary systems. In this contribution we give an update on all improvements we have implemented to make this mode more efficient and perform better. With tight timing constraints in commissioning, we focused on the long wavelengths occulter MASK335R. Here we describe how we improved the target acquisition for all five masks, the distortion correction and global alignment, the absolute flux calibration, etc. We also implemented the default dual channel operations mid-Cycle 1 (simultaneous short and long wavelengths). While not trivial, this new capability improves the efficiency and the impact NIRCam Coronagraphy can have in the field of exoplanets. We discuss the current on-sky contrasts and astrometric performances which are now better understood and can be compared to other high contrast facilities. We demonstrate that NIRCam Coronagraphy is transformative in characterizing known objects but also discovering colder and/or more mature exoplanets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
N. Godoy, E. Choquet, L. Altinier, A. Lau, R. Mayer, A. Vigan, D. Mary
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309252 (2024) https://doi.org/10.1117/12.3019073
In this study, we explored the fundamental contrast limit of NIRCam coronagraphy observations, representing the achievable performance with post-processing techniques. This limit is influenced by photon noise and readout noise, with complex noise propagation through post-processing methods like principal component analysis. We employed two approaches: developing a formula based on simplified scenarios and using Markov Chain Monte Carlo (MCMC) methods, assuming Gaussian noise properties and uncorrelated pixel noise. Tested on datasets HIP 65426, AF Lep, and HD 114174, the MCMC method provided accurate but computationally intensive estimates. The analytical approach offered quick, reliable estimates closely matching MCMC results in simpler scenarios. Our findings showed the fundamental contrast curve is significantly deeper than the current achievable contrast limit obtained with post-processing techniques at shorter separations, being 10 times deeper at 0.5 ′′ and 4 times deeper at 1′′. At greater separations, increased exposure time improves sensitivity, with the transition between photon and readout noise dominance occurring between 2′′ and 3′′. We conclude the analytical approach is a reliable estimate of the fundamental contrast limit, offering a faster alternative to MCMC. These results emphasize the potential for greater sensitivity at shorter separations, highlighting the need for improved or new post-processing techniques to enhance JWST NIRCam sensitivity or contrast curve.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Klaus Subbotina Stephenson, Aarynn L. Carter, Andrew Skemer
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309253 (2024) https://doi.org/10.1117/12.3014732
Direct imaging campaigns executed with James Webb Space Telescope (JWST) will enable the study of the faintest observable exoplanets yet. To assist observers in the JWST proposal process, we present an in-depth exploration of the effects of moderate contrast binary (visual and physical) systems on JWST NIRCam coronagraphic Reference Differential Imaging (RDI) methods. All work in this paper is based on simulation data generated using the python package PanCAKE, in addition to a variety of custom scripts which we have made publicly available on GitHub. Presenting both contrast curves and more involved ‘heatmaps’ of sensitivity loss, we present quantifiable measurements for how a binary companion will impact contrast both totally and locally, as a function of magnitude, separation, and position angle. Observers can use results in this work to estimate the impact of a known binary, and in some cases will find that PSF subtraction can still be reliably performed. We have found several scenarios where JWST NIRCam coronagraphic RDI PSF subtraction can be viably performed using a binary reference, and make several suggestions. The brightest binary companions analyzed, with a relative brightness of 10−3, resulted in the worst local sensitivity loss of 3.02 units of magnitude. The faintest binary companions looked at, 10−6 relative brightness, have almost no effect on local sensitivity. Changing position angle impacts sensitivity loss by 0.5 − 0.3 depending on companion flux. Binary companion separation considerations should be on a case-by-case science goal basis. This work also discusses the trade space for these suggestions in detail.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Imaging: the Roman Coronagraph
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309255 (2024) https://doi.org/10.1117/12.3020205
The Coronagraphic Instrument onboard the Nancy Grace Roman Space Telescope is an important stepping stone towards the characterization of habitable, rocky exoplanets. In a technology demonstration phase conducted during the first 18 months of the mission (expected to launch in late 2026), novel starlight suppression technology may enable direct imaging of a Jupiter analog in reflected light. Here we summarize the current activities of the Observation Planning working group formed as part of the Community Participation Program. This working group is responsible for target selection and observation planning of both science and calibration targets in the technology demonstration phase of the Roman Coronagraph. We will discuss the ongoing efforts to expand target and reference catalogs, and to model astrophysical targets (exoplanets and circumstellar disks) within the Coronagraph’s expected sensitivity. We will also present preparatory observations of high priority targets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309256 (2024) https://doi.org/10.1117/12.3020478
The Nancy Grace Roman Space Telescope’s Coronagraph Instrument will for the first time demonstrate active wavefront sensing and control for a space-based coronagraph, and may image the first planet in reflected light. The Community Participation Program has been initiated to engage members of the broader scientific community in the preparation for its planned launch in late 2026/early 2027. Here we will present the on-going work of the Data Reduction and Simulations working group, one of the four working groups within the Community Participation Program. The working group is charged with the development of the data reduction and postprocessing pipeline for the on-sky data and the development of a simulation suite to aid in the preparation and planning of Roman Coronagraph observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309257 (2024) https://doi.org/10.1117/12.3020643
Polarimetric differential imaging observations provide the highest contrast images of circumstellar disks in addition to providing information on dust grain scattering properties. The upcoming Nancy Grace Roman Space Telescope Coronagraph is expected to measure the linear polarization fraction of disks greater than 0.3 with an uncertainty of 0.03. One of the critical problems with polarimetric observations is the polarization aberrations generated by the telescope and polarimetric optics, which introduce errors when measuring lower SNR polarized signals. A modeling pipeline was previously developed to simulate the polarization observations of higher SNR debris disks similar without accounting for polarization aberrations. Here, we present the simulated polarimetric disk images of fainter debris disks (∼0.1mJy/arcsec2) through the Roman telescope and the HLC and SPC coronagraphs, incorporating polarization aberrations, jitter, detector, and speckle noise. The Point Response Functions are generated using PROPER for each orthogonal polarization state to account for the polarization aberrations. Finally, we compare the recovered polarization fraction of the debris disk with the input to demonstrate the polarimetric capability of the Roman Coronagraph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Lisa Altinier, Élodie Choquet, Arthur Vigan, Nicolás Godoy, Alexis Lau
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309258 (2024) https://doi.org/10.1117/12.3019211
The Roman Coronagraph Instrument will be the first space facility equipped with deformable mirrors (DMs). These will lead to reach a contrast of 10−8 or better in a dark hole between 3λ/D and 9λ/D. Post-processing techniques play an important role in increasing the contrast limits. Our work investigates how DMs can be used to calibrate the instrument response to controlled wavefront error maps and to improve the post-processing performance. To this goal, we are developing a simulation pipeline, CAPyBARA, that includes both a propagation model of the Coronagraph and a post-processing module and produces starlight subtracted images of a science target. This pipeline will then allow us to investigate alternative observing strategies and test their performance for the Roman Coronagraph. Here we present the first version of the simulator: it currently reproduces the optical propagation, which consists in the hybrid Lyot coronagraph (HLC) optical structure and dark-hole digging technique (Electric Field Conjugation, EFC, coupled with β-bumping), the environment (quasi-static aberration) and the postprocessing. With it, we mimic a Roman Coronagraph Instrument observing sequence, which consists in first acquiring reference star data before slewing to the scientific target, and we investigate how the evolution of the quasi-static aberrations deteriorate the contrast limit in the dark hole. We simulate a science target with planets at high contrast with their star and we perform a first post-processing analysis with classical subtraction techniques. Here we present the CAPyBARA simulator, as well as some first results. The next step will be to generate PSF libraries by injecting pre-calibrated probes on the DMs (in open loop) during the reference star acquisition and compute a PCA model. Later, we will compare the performance gain obtained with the modulated-DM reference library over standard approaches (RDI).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309259 (2024) https://doi.org/10.1117/12.3018881
The Nancy Grace Roman Space Telescope, NASA's next flagship mission in astrophysics, is due for launch in May 2027 with an onboard Coronagraph Instrument (CGI) which will serve as a technology demonstrator for exoplanet direct imaging. The Roman Coronagraph will be capable of detecting and characterizing exoplanets and circumstellar disks in visible light at an unprecedented contrast level of ~108 or better at small separations. The instrument is equipped with six precision alignment mechanisms (PAMs) which enable ultra-stable, sub-micrometer positioning of optical elements such as coronagraphic masks, optical filters and polarizers. In order to achieve contrast level, which are 2 to 3 orders of magnitude better than state-of-the-art visible or near-infrared coronagraphs, the mechanisms need to be stable at sub-microradian levels during a typically 10 hour long science observation. We report here about the development of these mechanisms and present their performance test results from the qualification/flight acceptance test program. All PAM flight models were delivered in the year 2022 and integrated into the CGI flight instrument. Meanwhile CGI has successfully completed all testing at JPL and was shipped to NASA GSFC in May 2024 for final integration into the Roman spacecraft.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Claude Aime, Céline Theys, Simon Prunet, André Ferrari
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925A (2024) https://doi.org/10.1117/12.3013679
Solar and stellar externally occulted coronagraphs share similar concepts, but are actually very different because of geometric characteristics. Solar occulters were first developed with a simple geometric model of diffraction perpendicular to the occulter edges. We apply this mere approach to starshades, and introduce a simple shifted circular integral of the occulter which allows to illustrate the influence of the number of petals on the extent of the deep central dark zone. We illustrate the reasons for the presence of an internal coronagraph in the solar case and its absence in the exoplanet case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Starshade is one of the technologies that will enable the observation and characterization of small planets around solar-like stars through direct imaging. Extensive models have been developed to describe a starshade's optical performance and the resulting noise budget in exoplanet imaging. The Starshade Exoplanetary Data Challenge (SEDC) was designed to validate this noise budget and evaluate the capabilities of image-processing techniques, by inviting community participating teams to analyze >1000 simulated images of hypothetical exoplanetary systems observed through a starshade. One of the biggest challenges of the planetary discovery through the direct image technique is the distinction between true planets and structures in exozodiacal disks. Here we summarize the techniques used by the participating teams and compare their findings with the truth. With an independent component analysis to remove the background, about 70% of the inner planets (close to the inner working angle) have been detected and ~40 of the outer planet (fainter than the inner counterparts) have been identified. Also, the inclination of the exozodiacal disk can be inferred from individual images. Planet detection becomes more difficult in the cases of higher disk inclination, as the false negative and false positive numbers increase. Finally, we find that a non-parametric background calibration scheme, such as the independent component analysis reported here, can perform background subtraction close to the photon-noise limit, with a median residual of ~5% the background brightness, for exozodiacal density level ranging between 1 and 30 zodis. The results of the SEDC strongly corroborate the starshade noise budget with realistic images, and provide new insight into background calibration that will be useful for anticipating the science capabilities of future missions that use a starshade.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Simon Prunet, Claude Aime, André Ferrari, Céline Theys
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925C (2024) https://doi.org/10.1117/12.3014300
The design of starshades, i.e. external occulters for stellar coronography, relies on the fast and precise computation of their associated diffraction patterns of incoming plane waves in the telescope aperture plane. We present here a method based on a polygonal approximation of the occulter’s shape, that allows fast computation of their diffraction patterns in the Fresnel approximation, without aliasing artefacts. It is competitive with respect to methods based on direct 2D Fourier transforms, or Boundary Diffraction Wave algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925D (2024) https://doi.org/10.1117/12.3020798
NASA’s Habitable Worlds Observatory addresses the challenging goal of characterizing numerous Earth-like exoplanets orbiting nearby stars. While the baseline approach is to carry out the observations with a coronagraph, current planning calls for the observatory to be “starshade ready” so that it can take advantage of the superior throughput, working angle, contrast, and bandwidth when the telescope is paired with a starshade. We describe two starshade designs that together enable imaging in the UV, visible, and NIR bands, as well as a multi-starshade configuration that could efficiently discover and characterize exoplanets. Additionally, we estimate the stellar light leakage and solar light scatter from micrometeoroid impacts and show that after 10 years on orbit, the stellar leakage will have contrast below 10^-11 while solar scatter will be fainter than V=31 mag.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Astronomy is data and observation driven. We have presented in a recent series of papers idea, that we think are necessary to make the second next generation of space telescopes possible. With this paper we want to present that the ideas and fields of improvement identified in the previous studies are also applicable to allow for faster, less costly and less risky medium and small size missions. This is already a reality for CubeSat programs, where system components and even payload parts can be bought off the shelf. It is nevertheless not yet a commonly used approach for missions of medium scale and development times between 5 and 15 years. We will show, that the re-use of concepts and components, as well as the design of components for later re-use, are a time- and cost-efficient way forward. And that this approach will even allow the design and implementation of scientific missions that would else not be possible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925H (2024) https://doi.org/10.1117/12.3018414
The Habitable Worlds Observatory (HWO) will need unprecedented stability in order to achieve the desired science performance. Achieving this stability will push the state of the art in structural damping, environmental shielding, thermal sensing and heater control, control architecture, etc. and will even involve consideration of effects that were previously negligible such as low-energy micrometeorites and bulk charging of mirrors. In this paper, we explore the interactions between basic architectural trades and the ability of the observatory to meet the stability requirements. As an example, we discuss how the need for an ultra-stable structure translates to requirements on an environmental shield. We then look at options for the architecture of such a shield and interactions between these possible shield configurations and other design considerations such as verifiability, manufacturability, mass, risk, serviceability, and lifetime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Habitable Worlds Observatory (HWO) imposes the highest level of temporal and spatial stability requirements on the mirror segments that will comprise its entrance pupil. Some questions of ultrastability realization are addressed by simple models of lightweighting cells and response timescales to thermal stimulus. Closed Back (CB) lightweighted segments are attractive from the eigenfrequency and areal density perspectives but have a long thermal time constant associated with applied thermal stimulus changes, radiated from a heater plane behind the mirror. Open Back (OB) lightweighted segments enjoy a rapid thermal time constant but are not presently meeting the eigenfrequency and areal density of the CB. Thus, neither CB nor OM appears to be optimal for HWO stability. We explore a third option, Partially Closed Back PCB lightweighted segments. PCB segments appear to exhibit eigenfrequencies approaching that of the CB, with thermal time constant characteristics close to those of the OB, thus the best of both forms. We explore preliminary questions of ultrastability for HWO inclusive of these three segment models.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925J (2024) https://doi.org/10.1117/12.3021198
The Habitable Worlds Observatory (HWO) is currently being considered as a future, coronagraph-equipped space telescope that would fulfill the top priority of Astro-2020. The top priority stated is the building of a telescope capable of detecting and characterizing exoplanets with sensitivity down to Earth-like planets. In a coronagraph approach, the methodology for setting up the error budget and performance model can benefit directly from the Nancy Grace Roman Space Telescope (RST) experience. RST’s Coronagraph Instrument (CGI) is a direct precursor to the HWO coronagraph, with performance reaching below 10−7 in contrast demonstrated in very recent thermalvac testing, and the possibility that it will perform better with more time on orbit. The RST CGI development benefited significantly from an error budget approach and analytical model focused on the noise incurred in measuring a planet’s flux ratio. In this brief paper we outline the current state of the application of the Roman approach to an HWO flux ratio noise error budget, including reasonable allocations informed by the Roman experience, and recent studies of narrow angle scatter done independently.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925K (2024) https://doi.org/10.1117/12.3020211
The search for Exo-Earth biosignatures is the ultimate, and most challenging, scientific objective of the Habitable Worlds Observatory. The Exoplanet Spectroscopy Technologies Project (abbreviated ExoSpec) is dedicated to maturing three subsystem technologies that can enable the characterization of directly imaged exoplanets: integral field spectrographs (IFS), radiation-tolerant photon counting CCD detectors, and parabolic deformable mirrors (PDMs). While we advance these subsystem technologies through separate laboratory prototype demonstrations, we are also assessing their impact in terms of scientific yield at the system level through science-based end-to-end modeling and spectral retrieval simulations. This modeling pipeline provides a framework to guide engineering trades. This proceeding reports on the status of the ExoSpec effort, key technology demonstrations planned, the current testbed configuration, and technological progress to date.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925L (2024) https://doi.org/10.1117/12.3020689
The proposed Habitable Worlds Observatory (HWO) aims to study the atmospheres of Earth-like exoplanets with direct imaging. Understanding an individual Earth-like planet could require weeks of observation time split over multiple visits. The mission concept studies that inspired HWO, HabEx and LUVOIR, both suggested that precursor observations, or detecting the planets with indirect methods before the mission’s launch, can significantly reduce the time required per planet and should be a priority. The radial velocity method is currently thought to be the most capable of finding Earth-like exoplanets and has several surveys planned and underway. In this work, we investigate how different designs for HWO can affect the usefulness of precursor science. We focus on how the size of HWO’s field of regard, primarily determined by the pitch requirements, impacts our ability to schedule observations of planets potentially detectable by the current radial velocity surveys. Our yield simulations indicate that the field of regard of HWO can change the number of Earth-like exoplanets that can be directly imaged three times by up to 34%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925M (2024) https://doi.org/10.1117/12.3020858
Habitable Worlds Observatory (HWO) will search for biosignatures from Earth-size exoplanets in the habitable zones of nearby stars. The wavelength range for biosignatures used by the HabEx and LUVOIR mission concept studies was 200 nm to 2 microns and, as such, this is a candidate wavelength range for HWO. The visible wavelength range (500-1000 nm) provides for detection of water, oxygen, and Raleigh scattering; the near-ultraviolet is valuable for detection of ozone; and the near-infrared enables detection of carbon dioxide and methane for Earth-like atmospheres. Damiano et al. 2023 showed the significant improvement in spectral retrieval reliability when the NUV and NIR are both used with the visible. However, the challenge of the NUV, in addition to the technological and engineering challenges of starlight suppression in the NUV, is the drop in flux of host stars. In the NIR, the challenge is the geometric access to the habitable zone due to the wavelength dependency of the inner working angle limit of coronagraphs. For these reasons, exoplanet yields are lower in the NUV and NIR than in the visible and some instrument parameters are more critical for improving NUV and NIR yields than others. In this paper we present a new capability for performing a large number of end-to-end yield modeling simulations to enable large, multivariate parameter sweeps. We utilize this capability to calculate the Visible, NIR, and NUV yield sensitivities to the instrument parameters: aperture diameter, coronagraph core throughput, contrast, and inner working angle (IWA). We find that parameter interactions are important in determining yield, the most important of which is the interaction between contrast and IWA, but that the strength of that interaction is different in each of the three wavebands.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Wavefront Sensing and Segment Phasing
Achieving both high angular resolution and frequent revisit times for Earth (or planet) observation from low Earth orbit poses numerous challenges. The trade-off between increasing aperture size and the associated costs necessitates a novel approach. AZIMOV is a payload prototype project of a 6U CubeSat segmented deployable telescope with an aperture diameter of 30 cm currently in design phase. The large primary mirror enables a 1 m ground sampling distance in the visible. Optimal telescope performance requires precise phasing of the primary mirror, but Cubesat limitations (volume, power, computing) preclude conventional dedicated wavefront sensing methods. Only focal plane sensing appears feasible on small platforms. However, classical methods are iterative and computationally heavy due to the non-linearity between phase and image intensity. In this paper, we investigate deep learning for correcting piston, tip, and tilt aberrations across the primary mirror's four segments from a single focal plane image. We demonstrate diffraction-limited performance on a point source. This method, based on Convolutional Neural Network (CNN), is robust to noise and higher order aberrations, and outperforms classical iterative methods in terms of speed, accuracy and robustness. Finally, when imaging an unknown extended object on Earth’s surface, we demonstrate that our methods can consistently meet diffraction limited performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925O (2024) https://doi.org/10.1117/12.3019682
Sensitivity and resolution of space telescopes are directly related to the size of the primary mirror. Enabling such future extremely large space telescopes or even arrays of those will require to drastically reduce the areal weight of the mirror system. Utilizing a thin parabolic polymeric membrane as primary mirror offers the prospect of very low weight and the flexible nature of those membranes allows compactly store them upon launch. Upon deployment the structure is unfolded and the mirror shape restored. Being an extremely thin structure, an active shape correction is required. Utilizing a thermal control of the surface via radiative coupling, localized shape changes are imprinted into the membrane telescope. In this paper we present the modelling and experimental test of the radiative adaptive optics. A detailed modeling of the influence function of the radiative shaping onto the membrane mirror has been carried out. Experimentally we have been radiatively actuated the shape of a prototype mirror in closed loop with a wavefront sensor and proven that we can control the mirrors surface figure to a ~15nm RMS precision.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925P (2024) https://doi.org/10.1117/12.3019764
Membrane mirror technology offers the prospect for future extremely large space telescopes. Utilizing a thin parabolic membrane as primary mirror base, very low aerial weights can be achieved. The flexible nature of those membranes allows to roll the mirror and compactly store them upon launch. In this presentation the evaluation of a mounting structure for the membrane mirror will be presented. As the mirror is a thin membrane only, a stress free mounting need to be realized taking the gravity release into account. The mounting structure must take the membrane unfolding and radiatively controlled surface optimization into account, requiring special attend on the radiation management. Regarding a telescope structure to finalize a complete optical system has to be discussed in that respect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925Q (2024) https://doi.org/10.1117/12.3019886
A-DOT (Active Deployable Optical Telescope) is a payload prototype project of a 6U segmented deployable telescope with an aperture diameter of 300 mm currently in the design phase. This paper investigates two different strategies for phasing a deployable segmented telescope. The first method employs a classical optimisation approach, where the image sharpness is used as the primary metric for aligning the mirror segments. This technique involves iteratively adjusting the individual segments' positions and orientations to maximise the resulting image's sharpness. The second method takes a more innovative approach by leveraging the power of deep learning techniques. Deep learning algorithms, trained on a large dataset of simulated images, can learn to recognise and correct phasing errors automatically. This approach can potentially streamline the phasing process and enhance the telescope's overall performance. Preliminary results from the study demonstrate the efficacy of both methods in achieving excellent phasing control. Remarkably, these techniques have successfully identified and corrected significant phasing errors, with path length differences of several microns, ultimately reducing the residual errors to the desired performance level using a point source, typically below 15 nm in the visible spectrum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925R (2024) https://doi.org/10.1117/12.3017676
Current approaches for phasing of segmented space telescopes have required complex dedicated optics and mechanisms, such as Dispersed Hartmann sensors or grisms. These methods do not scale well as the number of segments increases. The broadband phasing approach used at the Keck Observatory does scale well and can work on space telescopes without the need for any additional hardware. We show that this method implemented as white light interferometry (WLI), using a standard imaging detector and filters, has a capture range limited only by the range of the segment actuators and can easily phase the mirrors to within the capture range of single wavelength phasing methods. An analysis of the Keck broadband phasing performance is presented and used to develop a formula for implementation of WLI on other segmented telescopes. As an example, a WLI implementation for the NASA Habitable Worlds Observatory telescope is developed and demonstrated via detailed wave-optics simulations. The implementation, performance and limitations of the proposed WLI method are discussed in detail in the paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925S (2024) https://doi.org/10.1117/12.3017872
We propose an approach for coarse alignment of a segmented space telescope using science instrument images. The recommended steps go from large post launch rigid body misalignments to within the capture range of coarse phasing where segment piston error is the predominant residual wavefront error. These steps include five data collection and analysis methods comprising of metrology capture, segment capture and identification, segment translation, segment stacking, and fine alignment. Using a proposed architecture for the NASA Habitable Worlds Observatory (HWO) we describe the details of our recommended approach for each telescope alignment step. We then compare this recommended sequence to alternative alignment progressions used in existing segmented testbeds and telescopes in terms of number of data collections required. This model-based demonstration establishes that the recommended coarse and fine alignment sequence performs more efficiently in time and resource cost, handing off to coarse and fine phasing activities further along the telescope commissioning process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Imaging: Photonics and Integrated Optics
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925T (2024) https://doi.org/10.1117/12.3016761
NASA’s highest priority future flagship astrophysics mission is a large infrared/optical/ultraviolet (IR/O/UV) telescope, the first in a series of new Great Observatories recommended by the 2020 Decadal Survey. The current concept for this telescope is the Habitable Worlds Observatory (HWO). One of the goals for HWO is to find habitable exoplanets. HWO will obtain spectra and direct images of distant, dim worlds, thus necessitating sensitive instruments. This paper presents instrument requirements and a design for an optical single photon counting photonic spectrograph (SPCPS) based on simulated observations of an Earth-like exoplanet atmosphere. The SPCPS uses emerging technologies: a single photon counting CMOS detector and an on-chip astrophotonic spectrograph, the latter offering a smaller and lighter instrument compared to traditional spectrographs. Using the Earth to simulate exoplanet atmospheric observations, the spectral signalto-noise ratio (SNR) of the O2-A band biosignature at 760 nm is the key criterion for optimizing the SPCPS system. This work assesses design requirements for the SPCPS for exoplanet atmosphere characterization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925V (2024) https://doi.org/10.1117/12.3020775
The Habitable Worlds Observatory aims to detect and characterize Earth-like exoplanets orbiting around Sunlike stars. Current coronagraph technology is not yet capable of reaching the required 1E-10 contrasts; however, advancements in photonic technologies may be able to fill this gap. A significant challenge in astrophotonics is the efficient coupling of light from the telescope into the photonic device. To address this, we have manufactured a photonic device incorporating a spatial array of photonic lanterns, designed to couple light in the focal plane into the device, even in the presence of aberrations. Additionally, we have constructed a testbed for the free-space coupling of light into photonic devices. This testbed is equipped with a segmented deformable mirror (DM) for inducing controlled phase aberrations and a vectorized Zernike wavefront sensor (vZWFS) for direct electric field measurement in the pupil plane. Our device comprises seven mode-sorting photonic lanterns arranged in a hexagonal layout, each coupling light into three modes: LP01, LP11a, and LP11b. This lantern array, paired with a dynamic photonic integrated circuit (PIC), forms the architecture of a near-ideal photonic coronagraph. We describe the development of the testbed, the preliminary characterization of the photonic lantern array, and present preliminary images through the device.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925W (2024) https://doi.org/10.1117/12.3014223
Space borne nulling interferometry in the mid-infrared waveband is one of the most promising techniques for discovering life markers in the atmosphere of Earth-like extra-solar planets. One of its main difficulties is to control freeflying telescope spacecrafts orbiting around a central combiner within accuracy better than one milometer typically. Moreover, the whole array must be reconfigured regularly in order to observing different planetary systems, thus increasing the risk of loosing one or more spacecrafts and aborting the mission before its end. In this paper is described a simplified optical configuration based on non-rotating, tip-tilted telescopes arranged along a linear array. The central combiner is made of a compact integrated optics chip located close to the detection plane. In that way the necessary number of array reconfigurations is limited and still allows efficient modulation of the planet signal. This leads to considerable simplification with respect to conventional nulling interferometer designs. Numerical simulations confirm that typical contrasts about 10-6 are achievable.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925X (2024) https://doi.org/10.1117/12.3019726
Nulling interferometry is a promising technique for direct detection of exoplanets. However, the performance of current devices is limited by the sensitivity to phase aberrations. The work presented here attempts to overcome those challenges by using a four-telescopes nulling interferometer architecture, called Kernel-Nuller, which includes a recombiner that positions the four signals in phase quadrature. This architecture is based on an integrated optical component containing 14 electronically controlled phase shifters, used to correct optical path differences that would be induced by manufacturing defects. The first part of the study consists in the development of an algorithm providing the delays to be injected into the component to optimize the performance of that device. The next step of this study deals with the analysis of the intensity distributions produced at the output of the Kernel-Nuller through a series of observations, against which statistical tests and data treatment techniques are applied to detect the presence of exoplanets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130925Y (2024) https://doi.org/10.1117/12.3034022
In this paper, we evaluate the viability of Cubesats as an attractive platform for lightweight instrumentation by describing a proof of concept CubeSat that houses an astrophotonic chip for transit spectroscopy-based exoplanet atmosphere gas sensing. The Twin Earth SEnsoR Astrophotonic CubesaT (TESERACT) was designed to house a correlation spectroscopy chip along with an electrical and optical system for operation. We investigate design challenges and considerations in incorporating astrophotonic instrumentation such as component integration, thermal management and optical alignment. This work aims to be a pathfinder for demonstrating that astrophotonic-based CubeSat missions can perform leading edge, targeted science in lower-cost CubeSat platforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Imaging: Coronagraphs, Optics, and Deformable Mirrors
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309260 (2024) https://doi.org/10.1117/12.3018914
For the Habitable Worlds Observatory (HWO), it is essential to broaden the controllable wavelength bandwidth for high-contrast imaging and spectroscopy to increase the exoEarth yield and characterization. The Parabolic Deformable Mirrors (PDM) subpackage, under the NASA Headquarters-directed Exoplanet Spectroscopy (ExoSpec) Work Package, is specifically tailored to do so. We have successfully procured a first-generation (Gen 1) PDM device and completed in-depth characterization of the device. This robust evaluation has become instrumental in informing subsequent stages of development, particularly in shaping the design and specifying requirements for the next generation, Gen 2, PDM device. We have built a testbed in an environmentally controlled cleanroom to experimentally demonstrate the use of a PDM in a coronagraph instrument with an integral field spectrograph (IFS). This versatile testbed is designed to test different DM architectures, low-order wavefront sensing schemes, and a lenslet-based IFS. This provides us with a basis for comparison with different DM configurations: 1) flat DM, 2) PDMs, and 3) a flat DM and PDMs. In this communication, we will discuss the testbed design and updates, PDM characterization, and Gen 2 requirement definitions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309261 (2024) https://doi.org/10.1117/12.3019009
Habitable World Observatory (HWO) is a NASA strategic mission recommended by 2020 astronomical decadal survey. Integral spectrometers play an important role to verify if the observed exoplanet is habitable. The traditional lenslet array based Integral Field Spectrometer (IFS) has the advantage of simplicity and compactness. However, it does not use detector pixels efficiently in order to prevent wavelength crosstalk among adjacent spectra. The efficient lenslet/mirrorlet IFS combines the advantages from both lenslet based and imager slicer based IFSes—keeping lenslet IFS’s simplicity and compactness, concurrently adding slicer IFS’s detector efficiency. This paper discusses the principle of efficient lenslet/mirrorlet IFS, design philosophy, and efficient spectral trace layout ideals. It uses HWO NIR IFS requirement as an example to provide an efficiency mirrorlet IFS optical design. The high detector efficiency not only reduces Needed detector pixel numbers, but also reduce the high communication rate demanding for much a large multiple instrument mission. The basic idea of the efficient lenslet/mirrorlet array IFS is to design a lenslet/mirrorlet array in such a way that the images from multiple mirrorlets are grouped and aligned as a spectrum from a single slit. Therefore, the number of detector rows used to prevent wavelength crosstalk is no longer needed. This paper is also going to address how to lay the traces on the detector and what is the difference from the traditional lenslet IFS. Our goal is to show that such an IFS is capable to lay all spectral traces onto a 2k x 2k detector array using HWO NIR requirement that has a higher spectral resolving power R = 70 and a large Field of View (FOV) of 96 λ/D.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309262 (2024) https://doi.org/10.1117/12.3020477
An integral field spectrograph (IFS) camera may help fulfill the exoplanet characterization goals of a future Habitable Worlds Observatory. The Roman Space Telescope Coronagraph Instrument Project established the laboratory performance baseline of a combined coronagraph and IFS system with the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES). New demonstrations are needed to expand on this milestone in terms of contrast, bandwidth, and field of view towards the requirements of the next flagship mission. Here we present the design of a successor to PISCES that can observe a 20 lambda/D field of view with a 30% instantaneous bandwidth at visible wavelengths with a resolving power of 70. The instrument will interface with the coronagraph on the Decadal Survey Testbed 2 located in the High Contrast Imaging Testbed 2 vacuum chamber at NASA's Jet Propulsion Laboratory, to support demonstrations of broadband wavefront sensing and control and data post-processing techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309263 (2024) https://doi.org/10.1117/12.3019380
Future space observatories will likely have segmented primaries, causing diffraction effects that reduce coronagraph performance. Reflective binary pupil apodizer masks can mitigate these, with the metamaterial black silicon (BSi) showing promise as a strong absorber. To bring contrast ratios to the 10−10 level as needed to observe Earth-like exoplanets, feature sizes on these BSi masks will need to be less than 5 microns when paired with MEMS (micro-electromechanical systems) deformable mirrors. As scalar diffraction cannot reliably model this feature size, we developed a Finite-Difference Time-Domain (FDTD) model of BSi masks using Meep software. We characterize the FDTD-derived polarization-dependent bidirectional reflectance distribution function of BSi and discuss the model’s shortcomings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Direct detection of earth-like planets using an internal coronagraph will require telescope wavefront stability on the order of ~ 10 picometers over a time scale of ~ 10 minutes. Passive wavefront stability of a space telescope at this level has never been demonstrated, yet active sensing and control is feasible. However, the sensing must be done during the science observation, and with a minimum of non-common path errors. The sensing and control must be done where it matters most – at the location of the focal plane mask. We have architected such a device, that will enable both of these capabilities. There are three key components of this optical element: 1) the coronagraphic field stop 2) the Zernike phase dimple and 3) the dielectric coating/antireflection surface. We will discuss the design and engineering of these key components, with an emphasis on the first iteration of the actual devices. We will also provide characterization of these devices in our metrology setup. Status of the testing and characterization of these devices in the vacuum, high-contrast optical testbed will also be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309265 (2024) https://doi.org/10.1117/12.3021201
Near-Angle Scatter (NAS) of the host star’s light may limit the ability of a potential Habitable Worlds Observatory (HWO) to detect and characterize an Earth-like planet around a Sun-like star via coronagraphy. NAS from each optical surface produces an E-field across the dark hole that is coherent. These E-fields sum and could be as large or larger than the coronagraph mask leakage E-field. NAS E-fields contribute to the dark hole noise floor via both shot noise and heterodyne amplification of the wavefront instability. The amount of NAS is determined entirely by the statistical properties of the optical surface microroughness and the operating wavelength. Surface properties include not only the rms roughness, but also correlation length and the functional form of the distribution itself. This paper derives an expression that specifies the surface statistics required to achieve a given coronagraph error budget NAS throughput allocation. Analysis does not include scatter from coating columnar structure, edges, contamination, micrometeoroid impacts, or polarization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309266 (2024) https://doi.org/10.1117/12.3020614
NASA is embarking on an ambitious program to develop the Habitable Worlds Observatory (HWO) flagship to perform transformational astrophysics, as well as directly image ∼ 25 potentially Earth-like planets and spectroscopically characterize them for signs of life. This mission was recommended by Astro2020, which additionally recommended a new approach for flagship formulation based on increasing the scope and depth of early, pre-phase A trades and technology maturation. A critical capability of the HWO mission is the suppression of starlight. To inform future architecture trades, it is necessary to survey a wide range of candidate technologies, from the relatively mature ones such as the ones described in the LUVOIR and HabEx reports to the relatively new and emerging ones, which may lead to breakthrough performance. In this paper, we present a summary of an effort, funded by NASA’s Exoplanet Exoplaration Program (ExEP), to survey potential coronagraph options for HWO. In particular, our results consist of: (1) a database of different coronagraph designs sourced from the world-wide coronagraph community that are potentially compatible with HWO; (2) evaluation criteria, such as expected mission yields and feasibility of maturing to TRL 5 before phase A; (3) a unified modeling pipeline that processes the designs from (1) and outputs values for any machine-calculable criteria from (2); (4) assessments of maturity of designs, and other criteria that are not machine-calculable; (5) a table presenting an executive summary of designs and our results. While not charged to down-select or prioritize the different coronagraph designs, the products of this survey were designed to facilitate future HWO trade studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Exoplanet Imaging: Sensing, Control, Algorithms, and Data Processing
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309267 (2024) https://doi.org/10.1117/12.3020181
Dynamic completeness–the probability of detecting an exoplanet on the ith observation of a particular target star–is an invaluable tool for exoplanet mission simulation and analysis. The evaluation of this quantity requires the marginalization of the propagation of a particular sample of planetary parameters. This process is either approximated via Monte Carlo, or by a much coarser approximation that assumes a near-constant value for the dynamic completeness after some characteristic ‘breaktime’ after the initial observation. The former approach is computationally costly, whereas the latter approach is frequently not sufficiently accurate for simulating realistic observing scenarios, and, depending on the population of planets being investigated, the breaktime may actually be longer than the mission duration. Here, we discuss alternative techniques for computing dynamic completeness, including a semi-analytical technique for evaluating the conditional density functions of parameters required to compute dynamic completeness at arbitrary points in time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309268 (2024) https://doi.org/10.1117/12.3018900
We study a mid-order wavefront sensor (MOWFS) to address fine cophasing errors in exoplanet imaging with future large segmented aperture space telescopes. Observing Earth analogs around Sun-like stars requires contrasts down to 10−10 in visible light. One promising solution consists of producing a high-contrast dark zone in the image of an observed star. In a space observatory, this dark region will be altered by several effects, and among them, the small misalignments of the telescope mirror segments due to fine thermo-mechanical drifts. To correct for these errors in real time, we investigate a wavefront control loop based on a MOWFS with a Zernike sensor. Such a MOWFS was installed on the high-contrast imager for complex aperture telescopes (HiCAT) testbed in Baltimore in June 2023. The bench uses a 37-segment Iris-AO deformable mirror to mimic telescope segmentation and some wavefront control strategies to produce a dark zone with such an aperture. In this contribution, we first use the MOWFS to characterize the Iris-AO segment discretization steps. For the central segment, we find a minimal step of 125 ±31 pm. This result will help us to assess the contribution of the Iris-AO DM on the contrast in HiCAT. We then determine the detection limits of the MOWFS, estimating wavefront error amplitudes of 119 and 102 pm for 10 s and 1 min exposure time with a SNR of 3. These values inform us about the measurement capabilities of our wavefront sensor on the testbed. These preliminary results will be useful to provide insights on metrology and stability for exo-Earth observations with the Habitable Worlds Observatory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309269 (2024) https://doi.org/10.1117/12.3019008
Maintaining wavefront stability while directly imaging exoplanets over long exposure times is an ongoing problem in the field of high-contrast imaging. Robust and efficient high-order wavefront sensing and control systems are required for maintaining wavefront stability to counteract mechanical and thermal instabilities. Dark zone maintenance (DZM) has been proposed to address quasi-static optical aberrations and maintain high levels of contrast for coronagraphic space telescopes. To further experimentally test this approach for future missions, such as the Habitable Worlds Observatory, this paper quantifies the differences between the theoretical closed-loop contrast bounds and DZM performance on the High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed. The quantification of DZM is achieved by traversing important parameters of the system, specifically the total photon flux entering the aperture of the instrument, ranging from 1.85 × 106 to 1.85 × 108 photons per second, and the wavefront error drift rate, ranging from σdrift= 30−3000 pm/√ iteration, injected via the deformable mirror actuators. This is tested on the HiCAT testbed by injecting random walk drifts using two Boston Micromachines kilo deformable mirrors (DMs). The parameter scan is run on the HiCAT simulator and the HiCAT testbed where the corresponding results are compared to the model-based theoretical contrast bounds to analyze discrepancies. The results indicate an approximate one and a half order of magnitude difference between the theoretical bounds and testbed results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
One of the primary scientific goals of the upcoming Habitable Worlds Observatory (HabWorlds) is to take spectra of reflected light from nearby Exo-Earths. High-contrast Integral Field Spectroscopy (IFS) instrumentation offers one promising avenue to obtain these observations. Aside from taking low-resolution spectra of directly imaged exoplanets, IFS cameras provide multi-wavelength images of residual starlight speckles and deformable mirror actuator probes. This year we restored the functionality of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) and integrated it with the ExoSpec coronagraph testbed at Goddard Space Flight Center. We will use the PISCES IFS to conduct in-air tests of broadband, high-order wavefront sensing and control techniques with a shaped pupil coronagraph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926B (2024) https://doi.org/10.1117/12.3019237
With the identified objective of enabling Earth-like exoplanets direct detection, and characterization of their atmospheric content, the Astro2020 report has placed the maturation of exoplanet imaging technology as a key priority for the coming decade. The High Contrast Spectroscopy Testbed (HCST) within the Caltech Exoplanet Technology laboratory serves as an in-air coronagraphic testbed demonstrator, integrating a high order deformable mirror for wavefront control and a vector vortex coronagraph (VVC). HCST has demonstrated excellent in-air contrast performance, achieving 1 × 10−8 raw contrast in broadband light, for both the apodized off-axis segmented pupil configuration and using single mode fiber planet injection. By introducing a low-order wavefront sensor (WFS) that utilizes either the in-band or out-of-band reflected light from the VVC coupled with a tip/tilt mirror, our objective is to address dynamic errors, thereby enhancing the wavefront stability of the experiment. We present in this proceeding the first steps towards a full tip/tilt control loop, starting with the optical design of our low-order camera. We performed a drift test overnight as a diagnostic of the coronagraphic performance stability and to possibly identify causes for the drift. Conclusions show that HCST demonstrate a remarkably stable environment to perform high-contrast imaging experiments, at the level of 1 × 10−8 contrast.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926C (2024) https://doi.org/10.1117/12.3020600
We describe a NASA Strategic Astrophysics Technology initiative. Our objective is the implementation and closed-loop demonstration of a new optical wavefront control element for the active correction of low-order wavefront errors associated with telescope line-of-sight jitter, thermal gradients, and alignment drift. In concert with a Lyot coronagraph and Zernike wavefront sensor in a laboratory vacuum environment, this hardware demonstrates the separation of active low-order and stable high-order wavefront control at high levels of contrast and provides experimental evidence that significant sources of error have been identified and effectively controlled or mitigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926E (2024) https://doi.org/10.1117/12.3018289
Direct imaging of exoplanets relies on complex wavefront sensing and control architectures. In addition to fast adaptive optics systems, most of the future high-contrast imaging instruments will soon be equipped with focal plane wavefront sensing algorithms. These techniques use the science detector to estimate the static and quasi-static aberrations induced by optical manufacturing defects and system thermal variations. Pair-wise probing (PWP) has been the most widely used, especially for space-based application and will be tested at contrast levels of ∼1e-9 on-sky along with the future coronagraph instrument onboarding the Roman Space Telescope. This algorithm leans on phase diversities applied on the deformable mirror that are recorded in pairs. A minimum of two pairs of probes are required per bandwidth. An additional unprobed image is also recorded to verify the convergence rate of the correction. Before PWP, Borde & Traub proposed a similar algorithm that takes advantage of the unprobed image in the estimation process to get rid of the pair diversity requirement. In this work, we theoretically show that this latter technique should be more efficient than PWP when the convergence time is not limited by photon noise. We then present its performance and practical limitations on coronagraphic testbeds at JPL and exhibit a first on-sky control of non-common path aberrations with such method on VLT/SPHERE.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926F (2024) https://doi.org/10.1117/12.3020656
The Habitable Worlds Observatory is expected to carry a coronagraph instrument capable of direct imaging of Earth-like exoplanets in the habitable zone of distant stars. Such an instrument requires stability of its wavefront to a few picometers RMS in phase, and 1% in amplitude over one observational cycle of approximately 12 hours. These tight requirements demand an adaptive optics system with extreme long term internal stability. In this paper, we show how phase shifting interferometry helps enable this long term stability by suppressing sources of 1/f noise while also providing measurement of both the phase and amplitude of the beam. Additionally, we show how a new type of noncommon path interferometer with a photonic phase shifter enables inclusion of this type of modulation into existing coronagraph layouts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926G (2024) https://doi.org/10.1117/12.3019146
Implementing high-order wavefront sensing and control (HOWFSC) algorithms on future space telescopes will require significant computing power. To enable the mission of Habitable Worlds Observatory to directly image exoplanets, we need to improve our understanding of the available performance of radiation-hardened processors. In this work, we describe the testing setup we use to evaluate HOWFSC algorithms, including Electric Field Conjugation and optical modeling on embedded processors. This testing setup enables accurate performance characterization of spaceflight-relevant CPUs and FPGAs in support of HOWFSC algorithms. We interface the embedded processors with a software model of a telescope and coronagraph to perform processor-in-the-loop testing. With this setup, we can test a range of telescope and HOWFSC algorithm configurations that are relevant to the design of future space missions, illuminating the feasibility of in-space HOWFSC algorithm execution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926H (2024) https://doi.org/10.1117/12.3020374
Exoplanet imaging uses coronagraphs to block out the bright light from a star, allowing astronomers to observe the much fainter light from planets orbiting the star. However, these instruments are heavily impacted by small aberrations in the wavefront and require the minimization of starlight residuals directly in the focal plane. Stateof-the art wavefront control methods suffer from errors in the underlying physical models, and often require several iterations to minimize the intensity in the dark hole, limiting performance and reducing effective observation time. This study aims at developing a data-driven method to create a dark hole in post-coronagraphic images. For this purpose, we leverage the model-free capabilities of reinforcement learning to train an agent to learn a control strategy directly from phase diversity images acquired around the focal plane. Initial findings demonstrate successful aberration correction in non-coronagraphic simulations and promising results for dark hole creation in post-coronagraphic scenarios. These results highlight the potential of model-free reinforcement learning for dark-hole creation, justifying further investigation and eventually experimental validation on a dedicated testbed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Elodie Choquet, Lisa Altinier, Nicolás Godoy, Alexis Lau, Arthur Vigan, David Mary
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926I (2024) https://doi.org/10.1117/12.3019163
The search for biosignatures in potentially habitable exoplanets is one of the major astrophysics’ drivers for the coming decades, and the prime science goal of the HWO NASA mission, a large UV-Optical-IR space telescope to be launched in the 2040s. To reach this goal, it will be equipped with state-of-the-art high-contrast spectroimaging capabilities enabling the detection of exoplanets 1010 times fainter than their host stars, a formidable challenge given today’s best detection limits at ∼ 10−6 contrast levels. This goal puts stringent constraints on the entire observatory, and demands the optimization at the system level to leverage the performance of individual sub-systems. However, while image processing techniques are a key asset to reach the ultimate performance, the science and technological definition of the mission concepts mostly rely on the coronagraph and wavefront control to reject the starlight, assuming a conservative gain of ∼ 10 in sensitivity from image processing, extrapolated from performance obtained with classical techniques on Hubble observations. In the ESCAPE project, we investigate integrated solutions for optimizing the observing methods and data processing techniques with future space telescopes, making use of their wavefront sensors and deformable mirrors. The Roman Space Telescope, scheduled for launch in 2026, will be a critical milestone to demonstrate key technologies ahead of HWO with the Coronagraph instrument, and is thus a unique opportunity to also test and validate innovative image processing techniques. Here we present the rational, methodology, and timeline of the ESCAPE project.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926J (2024) https://doi.org/10.1117/12.3019666
The Roman Space Telescope will be a critical mission to demonstrate high-contrast imaging technologies allowing for the characterisation of exoplanets in reflected light. It will demonstrate 10−7 contrast limits or better at 3–9 λ/D separations with active wavefront control for the first time in space. The detection limits for the Coronagraph Instrument are expected to be set by wavefront variations between the science target and the reference star observations. We are investigating methods to use the deformablel mirrors to methodically probe the impact of such variations on the coronagraphic PSF, generating a PSF library during observations of the reference star to optimise the starlight subtraction at post-processing. We are collaborating with STScI to test and validate these methods in lab using the HiCAT tested, a high-contrast imaging lab platform dedicated to system-level developments for future space missions. In this paper, we will present the first applications of these methods on HiCAT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926K (2024) https://doi.org/10.1117/12.3019204
High-contrast imaging in the next decade aims to image exoplanets at smaller angular separations and deeper contrasts than ever before. A problem that has recently garnered attention for telescopes equipped with high-contrast coronagraphs is polarization aberration arising from the optics. These aberrations manifest as low-order aberrations of different magnitudes for orthogonal polarization states and spread light into the dark hole of the coronagraph that cannot be fully corrected. The origin of polarization aberrations has been modeled at the telescope level. However, we don't fully understand how polarization aberrations arise at the instrument level. To directly measure this effect, we construct a dual-rotating-retarder polarimeter around the SCoOB high-contrast imaging testbed to measure its Mueller matrix. With this matrix, we directly characterize the diattenuation, retardance, and depolarization of the instrument as a function of position in the exit pupil. We measure the polarization aberrations in the Lyot plane, both with and without the Vector Vortex Coronagraph, to understand how polarization couples into high-contrast imaging residuals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926L (2024) https://doi.org/10.1117/12.3020010
The spectroscopic study of mature giant planets and low mass planets (Neptune-like, Earth-like) requires instruments capable of achieving very high contrasts (10−10 − 10−11) at short angular separations. To achieve such high performance on a real instrument, many limitations must be overcome: complex component defects (coronagraph, deformable mirror), optical aberrations and scattering, mechanical vibrations and drifts, polarization effects, etc. To study the overall impact on a complete system representative of high contrast instruments, we have developed a test bench at Paris Observatory, called THD2. In this paper, we focus on the polarization effects that are present on the bench which creates differential aberrations between the two linear polarization states. We compare the recorded beam positions of the two polarization states with the predicted from the Goos-H¨anchen and Imbert-Fedorov effects, both of which cause spatial shifts and angular deviations of the beam, longitudinal and transverse respectively. Although these effects have already been studied in the literature from the optical and quantum mechanical points of view, their measurement and impact on a complete optical bench are rather rare, although they are crucial for high-contrast instruments. After describing the Goos-H¨anchen and Imbert-Fedorov effects and estimating their amplitude on the THD2 bench, we present the protocol we used to measure these effects of polarization on the light beam. We compare predictions and measurements and we conclude on the most limiting elements on our bench polarization-wise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926M (2024) https://doi.org/10.1117/12.3020630
Polarization aberrations originating from the telescope and high-contrast imaging instrument optics introduce polarization-dependent speckles and associated errors in the image plane, affecting the measured exoplanet signal. Understanding this effect is critical for future space-based high-contrast imaging instruments that aim to image the Earth analogs with 10−10 raw contrast and characterize their atmospheres. We present end-to-end modeling of the polarization aberrations for a high-contrast imaging testbed, SCoOB. We use a vector vortex coronagraph (VVC) as the focal plane mask, incorporate polarization filtering, and estimate the peak contrast in the dark hole region 3-10 λ/D. The dominant polarization aberrations in the system are retardance defocus and tilt due to the OAPs and fold mirrors. Although the mean contrast in the dark hole region remains unaffected by the polarization aberrations, we see brighter speckles limiting the contrast to 1×10−9 at 1-2 λ/D. We extend the simulations using the measured retardance maps for the VVC and find that the mean contrast in SCoOB is more sensitive to retardance errors of the VVC and the QWP than the polarization aberrations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926O (2024) https://doi.org/10.1117/12.3018148
In order to spatially resolve the surface environment of the second Earth within 10 parsec from us and theoretically predicted gaseous accretion disk around the first stars at around z = 20, we require an optical infrared space telescope with an aperture of 100 km to achieve a spatial resolution of 1 microarcsecond and a sensitivity of 34 magnitudes. However, the realization of such an extremely large space telescope is technically challenging and requires a breakthrough beyond existing telescope ideas. Here, we propose a new telescope concept with a combination of multiple diffractive optical elements and electromagnetic formation flight of 1 - 100 million ultra-small satellites in Sun-Earth L2 halo orbit. To determine the telescope concept, we performed an alignment error analysis of a segmented optical system with many optical elements. As a result, we selected multiple diffractive optical elements, which have huge advantages over lenses and mirrors in terms of required alignment accuracy as well as volume / mass. We have started feasibility studies of this new concept to check if the required spatial resolution and sensitivity can be achieved with multiple diffractive optical elements, by comparing numerical predictions and ground experiments. In this presentation, we introduce the science cases, science requirements, and telescope concept.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926P (2024) https://doi.org/10.1117/12.3020041
We present a baseline science operations plan for the Black Hole Explorer (BHEX), a space mission concept aiming to confirm the existence of the predicted sharp “photon ring” resulting from strongly lensed photon trajectories around black holes, as predicted by general relativity, and to measure its size and shape to determine the black hole’s spin. BHEX will co-observe with a ground-based very long baseline interferometric (VLBI) array at high-frequency radio wavelengths, providing unprecedented high resolution with the extension to space that will enable photon ring detection and studies of active galactic nuclei. Science operations require a simultaneous coordination between BHEX and a ground array of large and small radio apertures to provide opportunities for surveys and imaging of radio sources, while coordination with a growing network of optical downlink terminals provides the data rates necessary to build sensitivity on long baselines to space. Here we outline the concept of operations for the hybrid observatory, the available observing modes, the observation planning process, and data delivery to achieve the mission goals and meet mission requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926Q (2024) https://doi.org/10.1117/12.3019437
General relativity predicts that black hole images ought to display a bright, thin (and as-of-yet-unresolved) ring. This "photon ring" is produced by photons that explore the strong gravity of the black hole before escaping its pull along trajectories that experience extreme light bending within a few Schwarzschild radii of the event horizon. The shape of the photon ring is largely insensitive to the precise details of the emission from the astronomical source surrounding the black hole and therefore provides a direct probe of the Kerr geometry and its parameters. The Black Hole Explorer (BHEX) is a proposed space-based experiment targeting the supermassive black holes M87* and Sgr A* with radio-interferometric observations at frequencies of 100 GHz through 300 GHz and from an orbital distance of ~30,000 km. This design will enable measurements of the photon rings around both M87* and Sgr A*, confirming the Kerr nature of these sources and delivering sharp estimates of their masses and spins.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Peter Galison, Michael D. Johnson, Alexandru Lupsasca, Trevor Gravely, Roman Berens
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926R (2024) https://doi.org/10.1117/12.3019994
The Black Hole Explorer (BHEX), is an orbiting, multi-band, millimeter radio-telescope, in hybrid combination with millimeter terrestrial radio-telescopes, designed to discover and measure the thin photon ring around the supermassive black holes M87* and Sgr A*. In order to guide the mission design for the BHEX instruments, this paper explores various aspects of the photon ring, like the spin-induced changes to its shape, or the intricate flow of light around a spinning black hole, by tracking, through visual simulations, photons as they course along geodesics. Ultimately, the aim of these visualizations is to advance the foundational aims of the EHE instrument, and through this experiment to articulate spacetime geometry via the photon ring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926S (2024) https://doi.org/10.1117/12.3020504
We present the basic design of a large, light weight, spaceborne antenna for the Black Hole Explorer (BHEX) space Very Long Baseline Interferometry (space-VLBI) mission, achieving high efficiency operation at mm/submm wavelengths. An introductory overview of the mission and its science background are provided. The BHEX mission targets fundamental black hole physics enabled by the detection of the finely structured image feature around black holes known as the photon ring, theoretically expected due to light orbiting the black hole before reaching the observer. Interferometer baselines much longer than an earth diameter are necessary to attain the spatial resolution required to detect the photon ring, leading to a space component. The science goals require high sensitivity observations at mm/sub-mm wavelengths, placing stringent constraints on antenna performance. The design approach described, seeks to balance the antenna aperture, volume and mass constraints of the NASA Explorers mission opportunity profile and the desired high performance. A 3.5 m aperture with a 40 μm surface rms is targeted. Currently, a symmetric, dual reflector, axially displaced ellipse (Gregorian ring focus) optical design and metallized carbon fiber reinforced plastic (CFRP) sandwich construction have been chosen to deliver high efficiency and light weight. Further exploration of design choices and parameter space and reflector shaping studies are in progress.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926T (2024) https://doi.org/10.1117/12.3018054
In this paper, we introduce the receiver architecture for the Black Hole Explorer (BHEX) Mission, designed to reveal the photon ring of black holes. The primary instrument is a dual-polarization receiver operating over the 240-320 GHz frequency range, utilizing a Superconductor-Insulator-Superconductor (SIS) mixer. This Double-Side-Band (DSB) receiver has an intermediate frequency (IF) range of 4-12 GHz and operates at a bath temperature of 4.5 K, for optimal performance , which necessitates the integration of a cryocooler. Complementing the primary receiver is a secondary unit covering the 80-106 GHz spectrum, featuring a cryogenic low noise amplifier. This secondary receiver, affixed to the cryocooler’s 20 K stage, serves to augment the SIS receiver’s performance by employing the Frequency Phase Transfer technique to boost the signal-to-noise ratio at the correlator output. Together, this sophisticated receiver duo is engineered to achieve the quantum-limited sensitivity required to detect the photon ring of black holes, marking a breakthrough in astrophysical observation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926U (2024) https://doi.org/10.1117/12.3019449
The Black Hole Explorer is a space-based very-long baseline interferometry (VLBI) mission that will seek to perform precision black hole measurements, detect the photon ring around a black hole, explore the spacetime, spin, and mass properties of black holes, and attempt to experimentally validate predictions of General Relativity. These ambitious goals are achieved through the use of cryogenic receivers offering quantum-limited sensitivities across a wide frequency coverage. The dual-band receivers at 80-106 GHz and 240-320 GHz require 20 K and 4.5 K operating temperatures, respectively. To reach this, the planned cryocooling system will include two cold stages; a 20 K stage which must lift a heat load of approximately 125 mW and a 4.5 K stage lifting 10 mW of heat load. A survey of 4 K cryocooler development for spaceflight is explored in order to baseline the cryocooling system design for BHEX and leverage existing technology in the space industry at high TRLs. Notable space missions of relevance include Planck, JEM/SMILES, Hitomi, XRISM, and the advancement of US cryocoolers in this temperature range thanks to the ACTDP/JWST. Integration of the cryocooler with the receivers and broader instrument requires careful consideration, as it influences the instrument operation and thermal challenges. The latter includes thermally linking the cold ends of each cooling stage whilst minimising heat losses and ensuring adequate passive cooling for the cryocooler warm end heat rejection. Moreover, the challenges and trade-offs in sizing the mass and reducing the power consumption are explored: varying modes of operation in conjunction with other key instrument subsystems, the receiver cold temperature requirements, which in turn influence the scientific objectives of the mission, and mitigating the mission critical risks of the system. Overall, this paper presents an overview of cooling needs, initial design considerations, a survey of 4 K spaceflight cryocooler developments and current progress, and balancing scientific requirements of the instrument with the limitations of technical cryocooling capabilities, within the framework of a small-class (SMEX) space mission aiming to achieve breakthrough goals in experimental black hole physics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926V (2024) https://doi.org/10.1117/12.3020729
This paper describes specification and early design of back end signal processing subsystems for the Black Hole Explorer (BHEX) Very Long Baseline Interferometry (VLBI) space telescope. The“back end” consists of two subsystems. First, the block downconveter (BDC) is a heterodyne system that performs a frequency translation of the analog signal from IF to baseband and amplifies and filters it for digitization. Second, the digital back end (DBE) samples the analog signal with an analog-to-digital converters (ADC) and digitally processes the data stream formatting them to the VLBI “VDIF” standard and converting to Ethernet packets for 100 gigabitper-second (Gb/s) Ethernet transport to the optical downlink system. Both the BDC and the DBE for BHEX support eight channels of 4.096 GHz bandwidth each, for a total processed bandwidth of 32.768 GHz. The BHEX back end benefits from mature terrestrial back end heritage, described in some detail. The BHEX back end itself is in the early stages of design, with requirements, interface specifications, and component trade studies well advanced. The aim is to build a prototype using terrestrial grade parts which are available in functionally identical space grade equivalents, and to use this prototype to advance the back end Technology Readiness Level (TRL) preparing for a Small Explorer (SMEX) proposal in 2025.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926W (2024) https://doi.org/10.1117/12.3019274
The Black Hole Explorer (BHEX) is a mission concept that can dramatically improve state-of-the-art astronomical very long baseline interferometry (VLBI) imaging resolution by extending baseline distances to space. To support these scientific goals, a high data rate downlink is required from space to ground. Laser communications is a promising option for realizing these high data rate, long-distance space-to-ground downlinks with smaller space/ground apertures. Here, we present a scalable laser communications downlink design and current lasercom mission results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926X (2024) https://doi.org/10.1117/12.3018053
Black Hole Explorer (BHEX) is a space VLBI mission concept, which can probe the black hole spacetime and the plasma properties including the magnetic fields of the accretion flows and relativistic jets. We propose scientific inquiries anticipated to be addressed by EHE, primarily through the imaging of microarcsecond-scale signatures in target sources. An appearance of a crescent-shaped shadow in a bright state of the M87 will enable us to constrain the magnitude of the black hole spin (Kawashima et al. 2019). A possible appearance of the plasma injection region in the vicinity of the black hole results in the formation of the multiple ring structure and may enable us to understand the jet formation processes (Kawashima et al. 2021, and Ogihara et al. submitted to ApJ). In addition, the reversal of the sign of the circular polarization and the separation of linear and circular polarization flux peaks will constrain the magnetic field structure and the thermal properties of the electrons, respectively (Tsunetoe et al. 2021, 2022). Other topics, including potential scientific inquiries of luminous active galactic nuclei, will be also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Time Domain: High Energy Transients
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926Y (2024) https://doi.org/10.1117/12.3018776
The payload Terzina is one of the two payloads on board the mission NUSES. NUSES is a space mission pathfinder for the study of high and low energy radiations, enabling new sensors, tools and methodologies. The NUSES satellite hosts two payloads: • Zirè: Monitor of protons and electrons flux variations (E<250 MeV); • Terzina: Path-finder missions for high energy (E>1 PeV) detection: Astrophysical neutrinos and cosmic rays will be detected from space using the atmospheric Cherenkov radiation. Requirements frequently become challenges when they must be traded off to resolve optimization conflicts. The very large Field of View (FoV), the requested compact design and the large collection area are in contrast with need for stray light optimization. The peculiar application forbids the presence of a flattener close to the focal plane, to avoid false Cherenkov events generated in the glass bulk. This fights the request of a flat focal plane. Large spectral bandwidth crossing the spectral range of the light pollution sources band drives the coating optimization. This paper will explain the logical trade-off procedure used to determine the optimum compromise solution for Terzina success.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130926Z (2024) https://doi.org/10.1117/12.3016203
In 2022-23, a conceptual change of the optical train around the focus of the infrared telescope of HiZ-GUNDAM project has been developed: a double Kösters prism is newly introduced as a key optical component to divide the incident near-infrared beam (0.9-2.5um) into four wave-bands, enabling to focus four band images simultaneously onto a 1k×1k MCT sensor array. It reduces the total cost compared with the previous design where three 1k×1k MCT sensors were to be used. The prism consists of four pieces of triangular columns made of anhydrous fused silica glued on the base plate made of fused silica. We carefully selected the glue which is durable against the vibration during launch as well as the harmful environment onboard (heat shock, irradiation, vacuum). We will show its design, simple simulation of structure/vibration analysis and the status of the fabrication of the double Kösters prism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Submillimeter, Millimeter, and Radio
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309270 (2024) https://doi.org/10.1117/12.3018903
We combine use of the Zemax Programming Language and an API (Application Programme Interface) feature in the Zemax Opticstudio software which allows for rapid ray-tracing computations and maps of intermediate ray distribution intersections with in-house IDL code to produce maps of stray-light distribution and spectral content of ghost images. The calculation of the spectral amplitude of the latter is performed via prior knowledge of spectral transmission of all optical elements involved in a refractor telescope. The results are of generic nature and can be applied to any optical system. For the numerical examples in this case we consider the JAXA LiteBIRD CMB Medium and High frequency telescopes as a study case and perform a parametric study of the position of its infrared rejecting filters by looking at multiple configurations within a python envelope. By manipulating the resulting intermediate products of ray incidence distribution we determine the optimal position of the filters that will minimize ghost features on the focal plane (or define some competing configurations based on desired outcomes).The resulting analysis is in competition with other aspects of filter positioning (mechanical and thermal) so the results of this optimization is not necessarily a final outcome. Results from such a study can be used to characterize the variation of spectral response across the focal plane caused by the impact angle distribution on the optical coatings and finally the distribution of thermal (out of band) rejected light reflected by the filters on the optical baffles. The first can be obtained with the majority of optical modelling commercial packages, the second are more complex and can also be done in a similar way with packages that perform non-sequential analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
LiteBIRD is a space mission aimed at searching for the primordial gravitational waves predicted by the inflationary models of the Universe through polarization observations of the cosmic microwave background radiation. It will conduct all-sky observations from an L2 orbit in the millimeter-wave frequency range (34-448 GHz) by using two types of telescopes, the low-frequency telescope (LFT) and the mid and high-frequency telescope (MHFT). One of the challenges faced by the LFT is the issue of infrared radiation entering the telescopes. Despite the telescopes continuously avoiding the Sun and Earth, the Galactic plane cannot be avoided during their all-sky observations. While LFT filters are designed to attenuate infrared radiation, there is the possibility that the attenuation level may not be sufficient. Therefore, we are exploring the deliberate roughening of the reflector surfaces to scatter the infrared radiation on the reflector as a potential solution. There are two methods being considered for creating this rough surface. The first method involves sandblasting, which has shown the ability to selectively remove infrared radiation but poses challenges in maintaining reflector surface accuracy and ensuring uniform treatment, especially for large reflectors. The second method involves intentionally roughening the surfaces during the final machining process, causing infrared radiation to scatter due to machined grooves. The potential risk with this method is the scattering enhanced by the machined patterns, similar to a diffraction grating. In this conference, we will provide an update on the progress of these efforts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309272 (2024) https://doi.org/10.1117/12.3019696
LiteBIRD is a JAXA strategic L-Class mission whose objective is the study of B-mode polarization from the cosmic background (CMB) radiation detection. Observations need to be conducted over a wide frequency range (34 GHz – 448 GHz) by three telescopes (the Low, Middle and High-Frequency Telescopes). We describe the electrical architecture of these instruments and the architecture of the Instrument Control Unit (ICU) of the payload. The ICU is composed of a new SRAM based FPGA component NG-ULTRA (4 x R52 ARM processor + FPGA on a chip) from the French manufacturer NanoXplore. We present more particularly the science data streams, the science on-board processing pipeline and the use of an embedded space-qualified payload generic software from CNES on the top of an hypervisor called XNG.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309273 (2024) https://doi.org/10.1117/12.3019749
LiteBIRD is a JAXA-led space mission for cosmic microwave background (CMB) polarimetry. One of the challenges in terms of the telescope optics is to characterize and suppress the effects of the far sidelobes in the antenna beam patterns, which contaminate the CMB signals with Galactic foreground radiation. For the Low-Frequency Telescope (LFT; 34 - 161 GHz) aboard LiteBIRD, the requirements include the far-sidelobe knowledge of −56 dB. Because the LFT will operate at 5 K, we investigate the technical feasibility of near-field antenna pattern measurements in a cryogenic chamber. We implement a cryogenic-compatible millimeter-wave circuit and motorized stages inside a chamber and scanned the aperture fields of the LFT, which is fully encased and cryogenically cooled in the chamber. As a pilot experiment in the design phase of the development of the LFT, we have demonstrated such a measurement technique using a 1/4-scaled LFT at 150 K.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309274 (2024) https://doi.org/10.1117/12.3021005
B-mode polarization detection in the Cosmic Microwave Background would provide crucial information on the inflationary universe. This is the main goal of the LiteBIRD JAXA-led space mission, to be launched by the beginning of the 2030s. To do so it is necessary to control instrumental systematics such as contamination from the far sidelobes of the telescopes. Following the studies that have been done for LiteBIRD’s Low Frequency Telescope (LFT), we measured near-field antenna patterns of a High Frequency Telescope (HFT) optical prototype to showcase the capabilities for the HFT of near-field antenna pattern measurement as well as holographic phase retrieval. We were able to characterize the far-field antenna pattern up to θ = 60° with a dynamic range of -80 dB. The residuals were estimated to be at most 5 dB at the -80 dB detection level. We detected far sidelobes at θ ≈ 30° with a relative intensity of -50 dB, in line with previous simulations of the HFT. Holographic phase retrieval and other time-frequency analysis of the data show promising results for the characterization of the HFT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The LiteBIRD experiment is an international spaceborne telescope, led by JAXA, to observe cosmic microwave background (CMB) radiation. The instrument will be deployed to measure and characterize the signature of the primordial gravitational waves from cosmic inflation in the B-mode polarization of the CMB radiation. These observations and measurements will take place over 15 separate bands in the range of 34 to 448 GHz. This paper will describe the process flow developed to fabricate the lowest bands of the detectors, namely in the range of 34 to 99 GHz. The detector wafer itself will be further divided into two process flows - one covering the cosmic ray mitigation structures and the other describing the trichroic polarization sensitive sinuous antenna, coupled to the transition-edge sensor (TES) detectors fabricated on the device side of the wafer. Building on the process flow previously developed for detector wafers in the adjacent higher low-frequency bands, these wafers will also incorporate Pd based cosmic ray mitigation structures, of different thicknesses, on both the skyside and device side.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309276 (2024) https://doi.org/10.1117/12.3018886
Future optical systems in the sub-mm range require low loss, low reflectance and broadband optics. Presented here is the development process for a hot press technique for making broadband multi-layer anti-reflection coatings for plastic lenses and optical components. The elevated temperatures used in this method induce a change in index and mechanical deformation in the substrate material due to polymer chain rearrangements. To avoid this, these components are annealed before they are machined to their intended form and prior to the application of any coating. Study of precise dimensional and refractive index changes between 115-130°C across repeated annealing cycles shows that ultra-high molecular weight polyethylene (UHMWPE) requires 3-4 annealing cycles above 125°C before stabilisation. We then present 3 and 5 layer test coating recipes for 90-225GHz with comparison between experimental measurements and theory. Preliminary results show good agreement. In this study, the methods presented are kept generic for any sub-mm band focusing broadly on 60-600GHz; however future work will apply what is achieved for future CMB experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
For the realization of high spectral sensitivity octave-wide bandwidth investigations in the millimeter-submillimeter spectrum, Integrated superconducting spectrometers (ISSs) such as the Deep Spectroscopic High-redshift Mapper (DESHIMA) (Endo et al., 2019) rely more and more on state-of-the-art nanofabrication. In these ISSs, the spectral resolution and sensitivity are determined by superconductive bandpass filters which are sensitive to nanometer-scale size variations between themselves. This limits the quality of the science data provided by the spectrometer. Here we demonstrate significant enhancements in the DESHIMA filter bank performance by addressing stitching issues in the electron beam lithography and by using a reduced electron beam step size. By measuring multiple device iterations under terahertz illumination, we were able to show a substantial increase in the usable spectrum fraction (USF) from 62% to 94%. Providing valuable insights into the development of the next-generation ISSs and other frequency-sensitive on-chip applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Poster Session: Astronomy on the Surface of the Moon
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309278 (2024) https://doi.org/10.1117/12.3018545
We have planned the Lunar observatory project, TSUKUYOMI aiming to meter-wavelength observations on the Moon. One of the scientific objectives is to observe the 21 cm global signal from the Dark Ages using the 1–50 MHz observing frequency range. The receiving system must have a noise temperature sufficiently lower than the foreground noise and also requires the flat bandpass response. To cover the ultra-wide bandwidth, an electrically-short dipole antenna and a preamplifier with high input impedance will be employed. This paper focuses on a feasibility study of the system performance. The environment of and around the observation site, such as the lunar surface dielectric constant and the antenna height from the ground plane, affects the sensitivity because it alters important parameters such as the antenna beam pattern and impedance. The investigation results of relationship between the surrounding environment and the sensitivity will be also reported.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 1309279 (2024) https://doi.org/10.1117/12.3018734
Low-frequency radio observations below 50 MHz on the Moon are not subject to some radio interference, allowing for the study before the formation of the first star, which is impossible from the Earth. Our lunar observatory project, TSUKUYOMI, aims to observe the 21cm global signal from the Dark Ages, requiring wideband observations covering 1-50MHz to spot absorption features of ∼ 40 mK relative to the CMB. Considering the radiation from the Milky Way, which is the main foreground noise source and the reception characteristics of the short dipole antenna, a pre–amplifier with a noise lower than 2nV/√ Hz and an input capacitance of 25pF will result in a system noise well below foreground noise over the entire bandwidth and a roughly flat wideband response. Managing the input/floating capacitance and using a lumped constant circuit is crucial for wideband performance. This paper outlines the wideband system and delves into the system performance requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Lunar Surface Electromagnetics Explorer at Night (LuSEE-Night) is a funded, joint project between NASA and DOE that is anticipated to launch at the end of 2025. It aims to make sensitive measurements across two decades in frequency between ~0.5 MHz and ~50 MHz from the radio-quiet far side of the moon. LuSEE-Night will search for the cosmological 21 cm signal from the Dark Ages as well as study solar winds and low frequency plasma astrophysics. The mission will demonstrate the feasibility of conducting radio-frequency astronomy from the far side of the moon and acts as a pathfinder for larger missions in the future. LuSEE-Night will deploy four orthogonal 3-meter monopole antennas sensitive to both linear polarizations simultaneously that will be mounted on a turntable with +/- 90° range. The performance and sensitivity of the antennas are critical aspects to making the project a success. This talk will delve into the design, modeling, and testing of the antenna module. We will describe the design choices that were made to balance science, reliability, and feasibility of the project while taking constraints imposed by a space mission into account.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927B (2024) https://doi.org/10.1117/12.3019741
GrainCams is a suite comprising two cameras: SurfCam and LevCam, developed by the Korea Astronomy and Space Science Institute (KASI) for the Commercial Lunar Payload Service (CLPS). SurfCam utilizes a light field camera with a Micro Lens Array (MLA) to capture 3D images of the fairy castle structures on the lunar surface. LevCam is designed to detect dust lofting above the lunar surface. Surviving extreme environments, including launch vibrations, lunar surface temperatures, space radiation, etc., necessitates thorough safety reviews, verification, and reliable ground testing of the system. This paper presents the comprehensive test results of GrainCams engineering qualification model (EQM), along with the cameras' performance following space environment tests such as Total Ionizing Dose (TID), Electro-Magnetic Compatibility (EMC), vibration/shock, and thermal-vacuum tests. Performance test analysis plays a crucial role in ensuring mission success. TID and EMC tests assess the space radiation endurance and electronic compatibility of the electrical components. The vibration/shock test evaluates mechanical stiffness and frequency characteristics during launch. Additionally, GrainCams undergoes temperature variation in the thermal-vacuum test to assess system performance under lunar operational conditions. Our demonstration confirms that GrainCams meet system requirements, and their performance in harsh environments is substantiated by the shared test results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927C (2024) https://doi.org/10.1117/12.3019854
Stellar in-flight calibration plays a pivotal role in improving the reliability of scientific data acquired by space optical instruments. Changes in sensitivity and performance of the image quality, caused by factors such as optical component degradation or misalignment, can be discovered and tracked by employing in-flight star images and comparing them with on-ground measurements. In this work, we introduce two simulation processes useful for this purpose and apply them to the Metis coronagraph aboard the ESA/NASA Solar Orbiter spacecraft. The first simulation process is a methodology for predicting star visibility in the Field of View (FoV) of the instrument. The second one improves the former code, integrating characteristics on the source, such as star magnitude, and the instrumental features, including reflectivity/transmission of the optical elements, and detector characteristics, e.g. bias, dark current,... The ultimate aim of the simulation is to generate an estimation of the intensity, in Digital Numbers, expected for each pixel of the detector, thus offering valuable insights into the instrument’s response to varying input flux conditions. This innovative approach will provide a comprehensive tool to anticipate and understand the coronagraph’s behavior in response to different celestial scenarios (e.g. from minimum to solar maximum conditions), contributing to more effective in-flight calibrations. Indeed, Metis operates in proximity to the Sun, in a challenging environment marked by high temperatures and significant temperature variations. Although the current results are preliminary, further work is needed to refine and fully understand the simulation outcomes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927E (2024) https://doi.org/10.1117/12.3018701
The infrared solar spectrum measured from the ground is difficult, if not impossible, outside the observation windows permitted by the Earth’s atmosphere. Existing solutions then call on modelling of the Sun, correction of ground measurements of atmospheric transmission or even measurements from space. This latter opportunity was seized with infrared observations from the Trace Gas Orbiter (TGO) interplanetary probe orbiting MARS launched to study its atmosphere using spectrometers installed on its Atmospheric Chemistry Suite (ACS) platform. The spectrometer ACS-NIR (Near InfraRed) thus makes it possible to probe the Martian atmosphere in the 0.7-1.7 μm spectral domain thanks to its solar occultation mode. In this mode, the ACS-NIR is pointed toward the Sun and its line of sight gradually passes through MARS’ atmosphere as the satellite moves in its orbit. The high-resolution solar spectrum is directly measured when the line of sight is above the atmosphere. A 10-month observation plan (October 2020-August 2021) consisting of recording all diffraction orders from the ACS-NIR was specifically deployed for this objective. One of the main concerns we face when recovering the solar spectrum is spectral contamination of diffraction orders. We will first present how we processed the diffraction order images to obtain the best possible solar spectrum in the 0.7-1.7 μm band. We will show how the use of 3 off-centre images of the same diffraction order allows both to avoid spectral contamination and to improve the detection of solar lines at the ends of the order image where the intensity is low. We will then show the final version of the solar spectrum that we obtain which will be compared to the Toon spectrum taken as a reference. We will finish by addressing the parts of the spectrum which present solar lines located in spectral bands not observable from Earth and absent from the reference spectrum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The ESA mission Solar Orbiter was successfully launched in February 2020. The Photospheric and Helioseismic Imager (PHI) provides measurements of the photospheric solar magnetic field and line of sight velocities at high solar latitudes with high polarimetric accuracy. The required pointing precision is achieved by an image stabilisation system (ISS) that compensates for spacecraft jitter. The ISS consists of a high-speed correlation tracker camera (CTC) and a fast steerable tip-tilt mirror operated in closed loop. We will present the results of the calibration measurements and performance tests from ground measurements, during commissioning and science phase. In addition, the correlation tracker was used to directly measure the pointing stability of the satellite.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927G (2024) https://doi.org/10.1117/12.3018890
Reflectance spectroscopy is a technique widely used to investigate the composition and physical properties of a surface. The spectro-polarimetry adds the investigation of the polarimetric state of the light, while keeping the spectroscopy dependency. This technique is currently limited for the characterization of the surface, but can bring another clue on the composition and physical properties of the studied surface. We present here the design of a novel ellipsometer, optimized for the investigation of the polarization state of the light reflected by a granular surface. This instrument is able to measure the linear and circular components of the polarization over a wide spectral range from the ultraviolet to near-infrared and at a wide choice of geometrical configuration. The wide spectral range is achieved with the use of a photoelastic modulator acting like a retardance waveplate over the whole working range. Spectro-polarimetric investigations of terrestrial and extra-terrestrial samples will have application to mineralogical investigations, planetary surface explorations, and improve our understanding of the Solar System.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927H (2024) https://doi.org/10.1117/12.3019523
Martian Moons eXplorer (MMX) is a sample-return mission of Phobos, the larger moon of Mars. To achieve the mission, a high-resolution 3D model of Phobos is essential, which requires a large number of high-resolution images to be sent back to Earth with enough quality before carrying out the landing activity. To realize this, the data transfer bandwidth is the bottleneck, and we adopt CCSDS 122.0-B-1 image compression, a variation of data compression based on the DWT method. This method allows us to select only one output quality for one image compression. On the other hand, the data transfer strategy shall be to transfer minimum-quality images first for quick looks and full-quality ones later. To realize this with the least computing power, we modified the method to output a low-quality full image and two supplemental data sets to better quality. This work is based on the CCSDS 122.0-B-1 implementation by a group of the University of Nebraska Lincoln.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927I (2024) https://doi.org/10.1117/12.3019738
JANUS is a multi-filter optical camera part of the JUICE ESA Mission, that has been launched last April from the French Guiana towards the Giovian system, where it will arrive in 2031. During the design phase of the instrument an extensive Straylight Analysys has been carried on, but after AIV the need to update the analysis on the base of the 'as built' system has become desiderable, to better interpretate the calibration data and prepare for science phase. We here report about this update, covering the rationale of the update, the used methodology and the obtained results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927J (2024) https://doi.org/10.1117/12.3020431
In this paper, we provide a detailed description of a bifocal panoramic lens (BPL), which allows recording a 360°×100° field and, simultaneously, a 20° circular field at a higher resolution. The BPL optical design has been specifically optimized for space environment operations. Furthermore, we describe the results of the tolerance and ghost analyses conducted on the camera, highlighting the challenges arising when dealing with such a wide-field objective due to entrance pupil aberrations and distortions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927K (2024) https://doi.org/10.1117/12.3021121
The Comet Interceptor mission has been adopted by the European Space Agency (ESA) Science Programme Committee in June 2022 as the first ”F” mission in the Science Programme. The aim of the mission is to increase the knowledge on comets and on the Solar System formation by encountering and exploring a Dynamically New Comet (DNC) or an Interstellar Object (ISO) originating at another star. EnVisS (Entire Visible Sky) is an all-sky camera designed to fly on Comet Interceptor and whose scientific task is to study the radiance and the polarization properties of the comet coma in the visible spectrum. The camera is composed of an optical head, a filter strip assembly and a detector. The Institute for Photonics and Nanotechnologies (CNR-IFN) of Padova and Leonardo SpA (Campi BisenzioFlorence) are in charge of the design of the filter package, which currently consists of three filter strips glued side by side. The central strip is a high transmission broadband (BB) filter in the range 550–800 nm with no polarization properties, while the side ones are linear polarization filters with the same transmission bandpass as the BB and with polarization axis at 45° from one another. In the CNR-IFN laboratories different types of polarizers have been tested to establish which one has the most fitting properties for EnVisS’s purposes. The analyzed filters are Moxtek Visible Light Polarizer RCV8N2EC and Ultra BroadBand Polarizer UBB01A, and Polarcor Wide Band Polarizer. For each type of polarizing filter, both transmissivity and reflectivity have been measured and compared both with those of the other filters as well as data provided by the manufacturer. Overall, measurements of the filters’ transmissivity and reflectivity agree with those provided by the supplier and mostly fit EnVisS’ purposes. Thanks to its optimal performance and the fused silica substrate, Moxtek UBB01A is considered the best candidate filter for the instrument between the polarizers that have been characterized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927L (2024) https://doi.org/10.1117/12.3021226
The work will describe the activities performed in the framework of the realization of a laboratory set-up for the integration and testing of a prototype of the EnVisS fish-eye camera. The EnVisS instrument is an all-sky camera conceived, and specifically designed, for Comet Interceptor, an ESA Fast mission foreseen to launch in 2029 to study a dynamically new comet. EnVisS will be mounted on a spinning stabilized probe performing a fast, about 20 hours, fly-by of the comet; the instrument task is to image the full coma of the comet in the 550-800 nm wavelength range to study the dust properties and its distribution. At the CNR-IFN premises in Padova-Italy, an ad-hoc laboratory test bench has been devised and set-up to integrate the EnVisS prototype and allow the verification of its optical performance. The final goal of the set-up will be twofold. At first, the EnVisS breadboard optical head developed by Leonardo S.p.A. (Florence-Italy) will be assembled with a dummy filter and a COTS detector package. After, together with the verification of the prototype optical performance, carry on a simulation of the acquisition scheme foreseen for the camera in flight. In this paper, the requirements for the set-up and the solutions adopted for its realization will be presented. An overview of the results obtained during the commissioning of the lab set-up, performed with some commercial elements (i.e. a fish-eye lens coupled to a camera), will be given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927N (2024) https://doi.org/10.1117/12.3017978
A new image simulator model is developed for small impacts on an asteroid’s surface from cameras onboard probes. Observing the ejecta dust following the impact enables the body’s physical characteristics examination. The model’s potential is demonstrated by a comparison with actual photographs of the Hayabusa2 impact and the simulated ones in terms of dust position and magnitude. To achieve the object, the model implements the characteristics of the camera used in the Hayabusa2 mission from the same location as the real camera in the impact instant. The results show a very good match between the real and simulated images, proving that the model can be useful for testing the performance of present and future cameras for ejecta dust observation. In addition, the possibility of using a lander for the same purpose at a safe distance from the impact point is being investigated to understand its utility and efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, 130927O (2024) https://doi.org/10.1117/12.3020730
The COronal Diagnostic EXperiment (CODEX) is the solar coronagraph developed by NASA-Goddard Space Flight Center in collaboration with the Korea Astronomy and Space Science Institute (KASI), and the Italian National Institute for Astrophysics (INAF). CODEX will be launched in September 2024 and will be hosted by the International Space Station (ISS) as an external payload. CODEX is designed to observe the linearly polarized K-corona within the wavelength range 385-440 nm to obtain simultaneous measurements of density, temperature, and radial velocity of the coronal electrons. CODEX is a two-stage externally occulted coronagraph, with a field of view of 2.67 degrees, featuring two fold mirrors, and a series of occulting elements that minimize the amount of diffracted light reaching the detector. The polarization of the solar corona is measured by means of a commercial polarization image sensor manufactured by Sony, the IMX253MZR, that spatially modulates the incoming light beam. The polarimetric characterization of the instrument is one of the fundamental steps to derive the desired physical quantities of the solar corona from observations. It is hence crucial to understand how the instrument modifies the incident polarized light, especially due to the presence of the two fold mirror system within the light path, which is notoriously a source of polarization aberrations. This work describes the polarimetric characterization of the CODEX coronagraph, to determine an estimation of the instrumental polarization, and the results are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.