Presentation + Paper
27 October 2023 Status of NASA’s stellar astrometry testbeds for exoplanet detection: science and technology overview
Author Affiliations +
Abstract
Accurate measurement of exoplanetary masses is a critical step in addressing key aspects of NASA’s science vision. Measuring masses of Earth-analogs around FGK stars out to 10 pc requires sub-microarcsecond astrometric accuracy, which is not within the capabilities of current instrumentation. Thus, new technology will be required to build an astrometric instrument capable of achieving such performance. This will immediately empower the possibility for dedicated astrometric missions, and perhaps most enticingly, it will enable astrometric observing modes to be added to any mission boasting a sufficiently stable direct imaging platform. In this paper, we provide an overview of the scientific goals and technology utilized on NASA’s testbeds dedicated to advancing stellar astrometry for exoplanet detection. The first one, located at the Jet Propulsion Laboratory (JPL), is dedicated to imaging stellar astrometry on sparse fields. The goal of this testbed is to mature the Diffractive Pupil technology to TRL-5, demonstrating high-fidelity performance in a relevant environment. This testbed operates in a vacuum tank at the High Contrast Imaging Testbed (HCIT) at JPL and has demonstrated detection of signals of 1.58e-5 λ/D which is equivalent to 0.75 μas on Hubble. The second testbed is also located at JPL, but it is dedicated to advancing narrow angle relative astrometry to detect exoplanets around nearby binary stars. The key technology in this testbed is a diffractive pupil specially designed to measure the angle between two sources on the sky. This testbed operates in air now, but we are designing a new version of this testbed that will operate in vacuum with the goal of demonstrating sub-microarcsecond accuracy astrometric measurements between binary stars.
Conference Presentation
(2023) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Eduardo A. Bendek, Matthew Noyes, Alex B. Walter, Catalina Flores, Ruslan Belikov, Dan Sirbu, Camilo Mejia Prada, Peter Tuthill, and Olivier Guyon "Status of NASA’s stellar astrometry testbeds for exoplanet detection: science and technology overview", Proc. SPIE 12680, Techniques and Instrumentation for Detection of Exoplanets XI, 126801H (27 October 2023); https://doi.org/10.1117/12.2677828
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Astrometry

Binary stars

Exoplanetary science

Vacuum

Astrophysics

Equipment

Exoplanets

Back to Top