Paper
15 December 2022 Spot-scanning laser scattering system for defects detection of wafer surface
Zuoda Zhou, Haiyan Luo, Wei Xiong, Zhiwei Li, Dingjun Qu, Ruizhe Ding, Wei Jin, Jin Hong
Author Affiliations +
Proceedings Volume 12478, Thirteenth International Conference on Information Optics and Photonics (CIOP 2022); 124782D (2022) https://doi.org/10.1117/12.2654738
Event: Thirteenth International Conference on Information Optics and Photonics (CIOP 2022), 2022, Xi'an, China
Abstract
As semiconductors' critical dimension decreases, higher precision inspection instruments are needed to detect defects in the manufacturing process. Optical inspection methods based on light and dark field microscopy can detect defects on large wafer areas well without damaging the wafer, but the minimum detectable defect size is limited because the defect scattering signal is easily buried by the scattering background noise from the wafer's rough surface. To detect submicron defects on wafer surfaces, a spot-scanning laser scattering scheme is developed based on the dark-field scattering technique. Using the Finite Difference Time Domain (FDTD) method and the inspection scheme, an electromagnetic scattering model of the defect on the wafer surface is established, and the defect characteristics and electromagnetic field distribution are simulated. Moreover, the effects of the collecting aperture angle on the signal intensity of defects and the discrimination of defects of different sizes, as well as the effects of the incident angle on the scattered signal intensity of submicron defects, are examined. A spot-scanning laser scattering experimental platform was built, and 200 nm, 1 μm, and 5 μm diameter polystyrene latex (PSL) spheres were deposited on the wafer surface to verify the validity of the proposed method. Signals of the three sizes of spheres were detected in the stitched images with good discrimination of signal intensity, and the signal of the 200 nm PSL sphere displayed a peak signal-to-noise ratio of 32.07 dB. This method provides a reference for further industrialized defect detection systems on wafer surfaces.
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Zuoda Zhou, Haiyan Luo, Wei Xiong, Zhiwei Li, Dingjun Qu, Ruizhe Ding, Wei Jin, and Jin Hong "Spot-scanning laser scattering system for defects detection of wafer surface", Proc. SPIE 12478, Thirteenth International Conference on Information Optics and Photonics (CIOP 2022), 124782D (15 December 2022); https://doi.org/10.1117/12.2654738
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Semiconducting wafers

Light scattering

Scattering

Defect detection

Laser scattering

Electromagnetic scattering

Particles

Back to Top