Presentation
27 April 2020 Evanescent wave fiber-optic CH4/CO2 gas sensing based on porous materials (Conference Presentation)
Author Affiliations +
Abstract
Methane is a major composition of natural gas and considered as a primary greenhouse gas of high global warming potential. In addition, it is also a hazardous flammable gas turns out to be highly explosive if its concentration level reaches 5 to 15 percent by volume. Carbon dioxide is another significant gas since CO2 corrosion is the most common cause of corrosion in natural gas pipelines. Long distance cost-effective CH4 and CO2 distributed sensing technologies for monitoring natural gas infrastructure are not yet readily available, and early corrosion on-set and low-level methane leak detection is highly desirable that can strengthen the integrity and operational reliability, improve the efficiency, and reduce pipeline emissions, which all advance the economics of natural gas delivery. In this work, two types of gas sensing materials, porous silica and hybrid polymer/metal-organic framework (MOF), are investigated based on evanescent wave absorption sensors consisting of a coreless fiber spliced between two single-mode fibers. The low-loss, low refractive index porous silica and the polymer/MOF material with an improved gas adsorption capability and CH4/CO2 selectivity prepared by the sol-gel dip-coating method are respectively used as coating applied to the surface of the coreless fiber. The effects of optical and morphological properties on the repeatability and sensitivity of fiber-optic evanescent wave sensors are studied from transmittance and reflectance measurements by utilizing laser diodes operating at CH4 and CO2 absorption lines. Distributed fiber gas sensing can benefit from the enhanced evanescent wave light scattering in the porous materials.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nageswara R. Lalam, Ping Lu, Mudabbir Badar, Fei Lu, Tao Hong, Michael P. Buric, and Paul R. Ohodnicki "Evanescent wave fiber-optic CH4/CO2 gas sensing based on porous materials (Conference Presentation)", Proc. SPIE 11389, Micro- and Nanotechnology Sensors, Systems, and Applications XII, 1138934 (27 April 2020); https://doi.org/10.1117/12.2558809
Advertisement
Advertisement
KEYWORDS
Fiber optics

Fiber optics sensors

Carbon dioxide

Corrosion

Absorption

Methane

Polymers

RELATED CONTENT

Fiber optic gas sensor for on-line CO2 monitoring
Proceedings of SPIE (September 28 2015)
Fiber optic approach for detecting corrosion
Proceedings of SPIE (April 20 2016)
Reversible low-loss fiber optic hydrazine sensor
Proceedings of SPIE (April 24 2010)
Fiber optic sensors for an in situ monitoring of moisture...
Proceedings of SPIE (January 17 2002)

Back to Top