The Air Force is interested in real-time, wearable, and minimally invasive monitoring of physiological and psychological traits to improve the readiness and performance of the warfighter. Reducing or removing false alarms from such wearables significantly enhance the chance for a successful mission accomplishment. Highly accurate human performance monitoring and health protection requires precise monitoring of chemical and biochemical biomarkers. However, the biomarker detection in physiologically relevant media, such as sweat, saliva, and exhaled breath faces significant challenges ranging from chemical interference to environmental extremity. In this presentation, we address the lessons learned from building minimally invasive sampling technologies that are needed for acquiring data about the concentrations of relevant biomarkers as the physiological and psychological indicators. We discuss the opportunities and limitations in the sampling mechanisms of the biomarkers that can occur in multiple phases, including the gas phase (breath) and/or liquid phase (sweat, blood, ISF). In addition, we provide insight on the limit of current state of the art technologies for deployable real-time biomarker monitoring, including but not limited to the number/property/concentration of the molecular biomarkers and their corresponding sensor selectivity/sensitivity. Finally, we show our ongoing in-house and collaboration research works on integrating these sensors to real-world platforms using unaltered samples to ultimately enable both real-time physiologic monitoring, as well as total exposure health protection.
|