Presentation + Paper
27 March 2019 Analysis of FBG reflection spectra under uniform and non-uniform transverse loads
Author Affiliations +
Abstract
Loads applied transversely on the external surface of waveguides change their circular cross-sectional geometry generating birefringence. Due to this effect the reflected spectrum of a Fibre Bragg grating (FBG) undergoes a splitting of the single peak of the Bragg wavelength. In this work, we employed the Transfer Matrix Method (TMM) for x- and y-polarized wave-modes to model the uniform FBG reflection spectra for uniform and non-uniform transverse loads. We also performed experimental measurements for two different transverse load scenarios. The load profiles chosen for these experiments were applied on the FBG sensor through a block of steel and a roll bearing pin. Then, the modelled and experimental results were compared resulting in good agreement of 85% (on average). Finally, during the roll bearing pin loading test, different responses were observed depending how the FBGs were surface mounted. To investigate this, the glue layer influence on the reflected spectrum was further studied experimentally.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Luigi Fazzi, Aydin Rajabzadeh, Alberto Milazzo, and Roger M. Groves "Analysis of FBG reflection spectra under uniform and non-uniform transverse loads", Proc. SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, 109701X (27 March 2019); https://doi.org/10.1117/12.2513795
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fiber Bragg gratings

Sensors

Polarization

Birefringence

Optical fibers

Bragg gratings

Fiber optics

Back to Top