We present novel methods for mounting lenses in a pair of instruments that presented challenging optical and mechanical requirements. The first instrument is the replacement Natural Guide Star Sensor (NGS2) for CANOPUS at Gemini South, which incorporates an objective consisting of a stack of six lenses mounted in a common bore. A compliant radial spacer was used to eliminate lens decentre resulting from the additional radial clearance required to accommodate differential thermal strains between the low thermal expansion lenses and a common bore. In the same instrument, tangent contact toroidal spacers were deployed in place of traditional conical spacers to further reduce contact stresses in fragile calcium fluoride lens elements. The toroidal faces were specified with a 10μm profile tolerance to avoid possible edge contact between the spacers and lenses. We investigated milling and turning machining processes for the production of the spacers by comparing their results via Coordinate Measuring Machine (CMM) measurements. In the second instrument, Veloce, built for the Anglo-Australian Telescope, a lens decentre requirement of 40μm led us to develop a simple means of in-situ centring adjustment of the cell mounted lens. Physical testing of the finished instruments verified the performance of each of these methods. NGS2 produced images at the factory acceptance test in which 94% of encircled energy was captured by a single 16um detector pixel, surpassing the specification of 80%. Bench testing of Veloce during assembly showed that the adjustment mechanism allowed centring of the lens over a range of +/- 0.1mm with a precision of 5μm.
|