Mid-infrared (MIR) spectroscopy is a reliable tool for the identification of gaseous and liquid mixtures due to their unique and inherent absorption spectra. Quantum Cascade (QC) Lasers and Interband Cascade Lasers are modern reliable sources to penetrate the MIR spectral range.
To increase the functionality of QC devices we designed and optimized a QC material that can be used as a QC laser and as a QC detector for the very same MIR wavelength, respectively. Switching from laser to detector is achieved by biasing the semiconductor (lasing mode) or operate it without any electric field applied (detecting mode), respectively. Due to this functionality increase the on-chip integration of a designable QC light source, an interaction zone and a QC detector is now feasible and has been demonstrated recently.
In this talk we present improved bi-functional QC material for the integration and further development of sensor systems, as well as different cavity concepts for gas and liquid sensing scenarios. Proof of concept sensing examples to demonstrate the integrated sensor systems will be given. Multi mode and single mode lasers made from bi-functional materials show comparable performance to regular state of the art QC lasers and no performance drop due to the additional detection functionality.
While QC lasers are already accepted within the scientific community, QC detectors still need to be further promoted. Thus, in addition to the improvement of the bi-functional QC material, we demonstrated a single period quantum cascade photo-detector with a responsivity of up to 1.3 A/W.
|