Nanophotonic structures that localize photons in sub-wavelength volumes are possible today thanks to modern nanofabrication and optical design techniques. Such structures enable studies of new regimes of light-matter interaction, quantum and nonlinear optics, and new applications in computing, communications, and sensing. The traditional quantum nanophotonics platform is based on InAs quantum dots inside GaAs photonic crystal cavities, but recently alternative material systems based on color centers in diamond and silicon carbide have emerged, which could potentially bring the described experiments to room temperature and facilitate scaling to large networks of resonators and emitters. Additionally, the use of inverse design nanophotonic methods that can efficiently perform physics-guided search through the full parameter space, leads to optical devices with properties superior to state of the art, including smaller footprints, better field localization, and novel functionalities.
|