^{ICSO 2020 - 203} Material attributes that define performance and efficiency of spaceborne mirrors

Tony B. Hull¹, Ralf Jedamzik², Janina Krieg², Thomas Westerhoff²

¹University of New Mexico, 21 Algodon Lane Placitas, New Mexico 87043 USA; ²Schott AG Mainz, Hattenbergstraße 10, 55122 Mainz, DE;

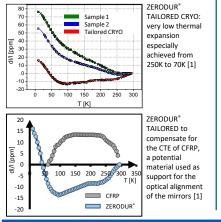
Abstract

In addition to the classical parameters used for mirror substrate material selection, we discuss several other attributes critical to implementation of spaceborne mirrors for various environments. Often trades are either limited to the material and approach the designer has used in the past, or are based on primary factors like specific stiffness and transient response. We look further at mission-critical attributes, including fracture mechanics, temporal drifts, deterministic implementation to design, inhomogeneity, anisotropy, polishability, compatibility with advanced coatings, and space heritage.

Scope and context

Space optics specifications:

- High-resolution
- Light- & mechanically stable
- Affordable Environmental challenges:
 Temperature changes
 Rough launch conditions


Space optics architectures:

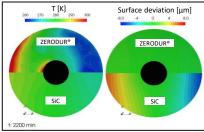
- 1. Science flow down and orbit selection
- 2. Material choice based on support data
- 3.Cost, schedule, TRL/risk, performance and error budgets

Detailed know-how of material required

CTE Tailored to application

The near-zero thermal expansion of ZERODUR® is tailored to the temperature range of interest: operating T environment or subsequent structural materials.

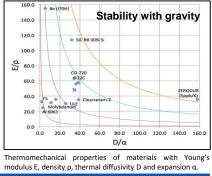
Material properties comparison


A number of mirror materials, compared below, have been used in spaceborne telescopes, each with strengths and weaknesses. Maximal dimensions, CTE values and inspection techniques as well as CTE homogeneity and zero-crossing are considered.

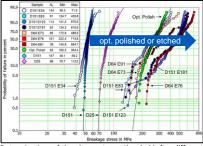
Material properties: Glass ceramics, glass, cordierites and metals. Bold designates favored

Attribute /	Maximum		CTE			
Material	monolithic diameter	Value	Homogeneity	0 at some Temp.	$\frac{\partial CTE}{\partial T}$	Inspect volume
ZERODUR®	<mark>4.3 m</mark>	Extremely Low 5 ppb/K	Superb	Yes, most cases	Low	Visible high resolution
ULE	~1.5 m / fuse larger	Low 30 ppb/K	Not published	Yes	Low	Visible high resolution
Fused Silica	~1.5 m	550 ppb/K	Good	No	Low	Visible high resolution
Cordierite 720	~1.5 m	Moderate Variable	Not published	Yes	High	X-ray low resolution
SiC	~1.5 m / fuse larger	2 500 ppb/K	Variable	No	Low	X-ray low resolution
AI	~0.4 m	23 000 ppb/K	Variable	No	<mark>Low</mark>	X-ray low resolution
Be	~1.6 m	12 000 ppb/K	Variable	No	Low	S-ray low resolution

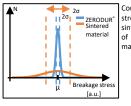
CTE vs. diffusivity


Simulations of the surface deviation under a 40K T-gradients are conducted to compare high CTE and high diffusivity materials. The former exhibits a surface deviation of at least 16 μ m, while this is negligible for ZERODUR[®].

Relative response of ZERODUR® and SiC primary mirrors: (left) temperature smoother for SiC; (right) ZERODUR® shows smoother surface deviation. high diffusivity fails to compensate for low CTE in terms of surface deviation [2].


Thermomechanical properties

The representative value of 5 ppb/K gives the best thermal performance for ZERODUR[®], while the mechanical figureof-merit is similar to those of most comparable materials for mirror substrates


Bending strength

The bending strength is analyzed from ZERODUR[®] samples of different surface conditions (ground, etched and polished). The threshold stress of ~42 MPa (D151 ground surface) is determined by a 3-parameter Weibull statistics. It triples for polished surfaces [3,4].

Determination of breakage stress threshold for different surface conditions by fitting the 3-parameter Weibull statistics

The distribution of the breakage stress around the mean value μ is recorded by 3-point flexural tests on ground surfaces. ZERODUR® exhibits a much tighter dispersion resulting in a smaller safety margin necessary compared to sintered materials.

Comparing the breakage stress dispersion of a sintered material to that of ZERODUR[®], a cast material.

Conclusion

implementation of a successful The spaceborne telescope must address controlling dimensional instabilities into orders-of-magnitude smaller regimes than traditional engineering applications. Every design decision is critical, and the choice of mirror material is especially critical. The best design must look beyond the first order characteristics of a material and consider CTE homogeneity and tailoring, breakage behavior, inspection possibilities and TRL. Extensive ZERODUR® data these address questions and is continuously extended.

References

 Jedamzik, R., and T. Westerhoff, Proc. SPIE 9151 (2014)
 T. Hull, T. Westerhoff, G. Weidmann, Proc. SPIE. Vol. 9573 (2015)

[3] P. Hartmann, Proc. SPIE 10706-25 (2018 & references) [4] P. Hartmann, Optical Engineering Vol. 58, Issue 2 (2019)

Correspondence: janina.krieg@schott.com, tonyhull@unm.edu

