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Abstract. Retinal images are essential clinical resources for the diagnosis of retinopathy and many other ocular
diseases. Because of improper acquisition conditions or inherent optical aberrations in the eye, the images are
often degraded with blur. In many common cases, the blur varies across the field of view. Most image deblurring
algorithms assume a space-invariant blur, which fails in the presence of space-variant (SV) blur. In this work, we
propose an innovative strategy for the restoration of retinal images in which we consider the blur to be both
unknown and SV. We model the blur by a linear operation interpreted as a convolution with a point-spread
function (PSF) that changes with the position in the image. To achieve an artifact-free restoration, we propose
a framework for a robust estimation of the SV PSF based on an eye-domain knowledge strategy. The restoration
method was tested on artificially and naturally degraded retinal images. The results show an important enhance-
ment, significant enough to leverage the images’ clinical use. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

[DOI: 10.1117/1.JBO.19.1.016023]

Keywords: blind deconvolution; space-variant restoration; image restoration; deblurring; retinal image.

Paper 130016RR received Jan. 11, 2013; revised manuscript received Dec. 23, 2013; accepted for publication Dec. 30, 2013; pub-
lished online Jan. 27, 2014.

1 Introduction
Blur is one of the main image quality degradations in eye fundus
imaging, which along with other factors such as nonuniform
illumination or scattering, hinder the clinical use of the images.
Its main causes are inherent optical aberrations in the eye, rel-
ative camera-eye motion, and improper focusing. Eye motion is
related to the patient inability to steady fixate a target in the fun-
dus camera. Many patients have difficulty in fixating, like many
elderly patients or those that suffer from amblyopia.1 Because
the optics of the eye is part of the optical imaging system, the
aberrations of the eye are a common source of image quality
degradation. To overcome this limitation, adaptive optics tech-
niques have been successfully applied to correct the aberrations,
thus producing high resolution images.2 However, most com-
mercial fundus cameras compensate for spherical refractive
errors, but not for astigmatism3—let alone higher-order aberra-
tions. In general, the aberrations of the eye have a stronger
impact in image degradation than the aberrations introduced by
the rest of the optical system, i.e., the retinal camera. Besides,
even though it is possible to measure the optical quality of the
camera, it would be exceptional to have readily available addi-
tional information related to the optical quality of the patient’s
eye. The described scenario is commonplace in the clinical
setting, for which we assume the same conditions here. This
brings about the need for a restoration procedure that accounts
for the lack of information related to the origin of the image
degradation.

The technique for recovering an original or unblurred image
from a single or a set of blurred images in the presence of a
poorly determined or unknown point-spread function (PSF) is
called blind deconvolution. Removing blur from a single blurred

image is an ill-posed problem as there are more unknowns
(image and blur) than equations. Having more than one
image of the same scene better poses the problem. In retinal im-
aging, it is not difficult to obtain a second image from the same
eye, with the convenience that acquisition conditions remain
quite similar. In fact, in Ref. 4, we took advantage of this con-
dition and proposed a blind deconvolution method to restore
blurred retinal images acquired with a lapse of time, even in the
case where structural changes had occurred in the images. In
that work, we detected structural changes, which in turn have
clinical relevance, and applied a masking operator so that the
images would comply with the considered degradation model.
This enabled the successful restoration of many degraded retinal
images coming from patient follow-up visits. However, the
method is limited to images blurred uniformly; in other words,
we assumed the blur to be space-invariant. In Sec. 4.2, we show
an attempt at restoring an image degraded with spatially variant
blur with this approach. The space-invariant assumption is
commonplace in most of the restoration methods reported in
the literature,5 but in reality it is a known fact that blur changes
throughout the image.6 In this work, we consider the blur to be
both unknown and space-variant (SV). This in itself is a novel
approach in retinal imaging; relevant to such extent that many
common eye related conditions, such as astigmatism, keratoco-
nus, corneal refractive surgery, or even tear break-up, may con-
tribute significantly to a decline in image quality7,8 typically in
the form of an SV degradation. An example of such a condition
is shown in Fig. 1(a). The image corresponds to an eye from a
patient with corneal abnormalities that lead to a loss in visual
acuity and a quality degradation of the retinal image [Fig. 1(b)].

Restoration of images with SV blur from optical aberrations
has been reported in the literature,9 although the main limitation
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is that the blurred image is often restored in regions or patches,
which are then stitched together. This inevitably leads to ringing
artifacts associated with frequency-domain filtering like in
Wiener filtering. Another clear disadvantage is a significant
complexity for accurately estimating the SV PSF, for instance
Bardsley et al.10 use a phase-diversity based scheme to obtain
the PSF associated with an image patch. This type of approach
is common in atmospheric optics where the conditions and setup
of the imaging apparatus (typically a telescope) are well known
and calibrated. Unfortunately, this is not immediately applicable
to retinal imaging, at least nonadaptive optics retinal imaging.
Recently, there have been several works11–13 that try to solve
the SV blind deconvolution problem from a single image. The
common ground in these works is that the authors assume that
the blur is only due to camera motion. They do this in order to
reduce the space in which to search for SV blurs. Despite their
approach being more general, the strong assumption of camera
motion is simply too restrictive to be applied in the retinal im-
aging scenario.

1.1 Contribution

In this work, we propose a method for removing blur from reti-
nal images. We consider images degraded with SV blur, which
may be due to factors like aberrations in the eye or relative
camera-eye motion. Because restoring a single blurred image

is an ill-posed problem, we make use of two blurred retinal
images from the same eye fundus to accurately estimate the SV
PSF. Before the PSF estimation and restoration stages take
place, we preprocess the images to accurately register them and
compensate for illumination variations not caused by blur, but
by the lighting system of the fundus camera. This is depicted in
the block diagram shown in Fig. 2. The individual stages of the
method are explained in Sec. 3.

We assume that in small image patches, the SV blur can be
approximated by a spatially invariant PSF. In other words, that
in a small region, the wavefront aberrations remain relatively
constant; the so-called isoplanatic patch.6 An important aspect
of our approach is that instead of deblurring each patch with its
corresponding space-invariant PSF—and later stitching together
the results—we sew the individual PSFs by interpolation and
restore the image globally. This is intended to reduce some arti-
facts that otherwise would likely appear at the seams of the
restored patches. The estimation of the local space-invariant
PSFs may fail in patches with hardly any structural information
(e.g., such as blood vessels). These poorly estimated or nonvalid
PSFs introduce artifacts in the restored image. Detecting such
artifacts and inferring the nonvalid PSFs is a difficult problem.
Recently, Tallón et al.14 developed a strategy for detecting these
patches in an SV deconvolution and denoising algorithm from a
pair of images acquired with different exposures: a sharp noisy
image with a short exposure and a blurry image with a long
exposure. Because they had two distinct input images that were
able to: (i) Identify patches where the blur estimates were poor
based on a comparison (via a thresholding operation) of the
deconvolved patches with the sharp noisy patches. (ii) In those
patches, instead of correcting the local PSFs and deconvolving
the patches again, they performed denoising in the noisy sharp
image patch. The end result is a patchwork-image of decon-
volved patches stitched together with denoised patches. Their
method is mainly oriented at motion blur, this is the reason
for a dual exposure strategy. This is not readily implementable
in the retinal imaging scenario where the SV blur is generally
caused by factors like aberrations, including those belonging to
the patient’s eye optical system, the eye fundus shape, and the
retinal camera. In this paper, we address the question “how to
identify PSF estimation failure to improve the SV deconvolution
of retinal images?” Retinal imaging provides a constrained
imaging scenario from which we can formulate a restoration
approach that incorporates prior knowledge of blur through
the optics of the eye. The novelty in our approach is in the strat-
egy based on eye-domain knowledge for identifying the non-
valid local PSFs and replacing them with appropriate ones.
Even though methods for processing retinal images in a space-
dependent way (like locally adaptive filtering techniques15,16)

Fig. 1 (a) Top: Eye with corneal defects that induce retinal images
with space-variant (SV) degradation. Bottom: zoomed region.
(b) Left column: original image and details. Right column: restored
image with proposed approach and details.

Fig. 2 Block diagram illustrating the proposed method. z is the degraded image, g is an auxiliary image
of the same eye fundus used for the point-spread function (PSF) estimation, and u is the restored image.
The other variables are intermediate outputs of every stage; their meaning is given in the text.
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have been proposed in the literature; to the best of our knowl-
edge, this is the first time a method for SV deblurring of retinal
images is proposed.

2 SV Model of Blur
In our previous work,4 we modeled the blurring of a retinal
image by convolution with a unique global PSF. This approxi-
mation is valid as long as the PSF changes little throughout the
field of view (FOV). In other words, that the blurring is homog-
enous. In reality, we know that the PSF is indeed spatially vari-
ant,6 to such an extent that in some cases the space-invariant
approach completely fails, bringing forth the need for an SV
approach. To address this limitation, in this work, we model
the blurred retinal image z by the linear operation

zðx; yÞ ¼ ½Hu�ðx; yÞ ¼
Z

uðs; tÞhðs; t; x − s; y − tÞdsdt;
(1)

where u is the unblurred retinal image and h is the SV PSF. The
operator H is a generalization of standard convolution where h
is now a function of four variables. We can think of this oper-
ation as a convolution with a PSF hðs; t; x; yÞ that is now depen-
dent on the position ðx; yÞ in the image. Standard convolution is
a special case of Eq. (1), where hðs; t; x; yÞ ¼ hðs; tÞ for an arbi-
trary position ðx; yÞ. Note that the PSF h is a general construct
that can represent other complex image degradations which
depend on spatial coordinates, such as motion blur, optical aber-
rations, lens distortions, and out-of-focus blur.

2.1 Representation of SV PSF

An obvious problem of spatially varying blur is that the PSF is
now a function of four variables. Except trivial cases, it is hard
to express it by an explicit formula. Even if the PSF is known,
we must solve the problem of a computationally efficient
representation.

In practice, we work with a discrete representation, where the
same notation can be used but with the following differences:
the PSF h is defined on a discrete set of coordinates, the integral
sign in Eq. (1) becomes a sum, operator H corresponds to a
sparse matrix and u to a vector obtained by stacking the columns
of the image into one long vector. For example in the case
of standard convolution, H is a block-Toeplitz matrix with
Toeplitz blocks and each column of H corresponds to the same
kernel hðs; tÞ.17 In the SV case that we address here, as each
column of H corresponds to a different position ðx; yÞ, it may
contain a different kernel hðs; t; x; yÞ.

In retinal imaging, all typical causes of blur change in a con-
tinuous gradual way,18 which is why we assume the blur to be
locally constant. Therefore, we can make the approximation that
locally the PSFs are space-invariant. By taking advantage of this
property, we do not have to estimate local PSFs for every pixel.
Instead, we divide the image into rectangular windows and esti-
mate only a small set of local PSFs [see Fig. 3(a)] following the
method described in Ref. 4 and outlined in Sec. 3. The estimated
PSFs are assigned to the centers of the windows from where
they were computed. In the rest of the image, the PSF h is
approximated by bilinear interpolation from the four adjacent
local PSFs. This procedure is explained in further detail in
the following section.

3 Description of the Method
In this section, we describe the different stages of the proposed
restoration method shown in Fig. 2. This paper follows Ref. 4
but addresses a more general problem: restoration of retinal
images in the presence of an SV PSF. In Ref. 4, we showed
that the single image blind deconvolution for blurred retinal
images does not provide a suitable restoration. Moreover,
in images with SV blur, the restoration is even worse.
Alternatively, by taking two images of the same retina we
can use a multichannel blind deconvolution strategy that is
mathematically better-posed.19

In this paper, the estimation of the SV PSF is carried out via
local multichannel deconvolution. To illustrate the method and
to study its dependence on its tunable parameters, we use an
original real image of the retina and obtain two artificially
degraded versions from it, denoted by z and g. Figure 3(a) con-
tains image z. The degraded images z and g have been obtained
by blurring the original image with an SV PSF represented by
the grid of local PSFs shown in Fig. 3(b) and adding Gaussian

Fig. 3 (a) Retinal image degraded with artificial SV blur given by
(b) grid of PSFs. The grid and the image patches shown in (a) are
used for local PSF estimation.

Journal of Biomedical Optics 016023-3 January 2014 • Vol. 19(1)

Marrugo et al.: Restoration of retinal images with space-variant blur



zero-mean noise (σ ¼ 10−6). The PSF grid was built with real-
istic PSFs estimated from real blurred retinal images using the
method of Ref. 4.

3.1 Preprocessing

Because we use a multichannel scheme for the estimation of the
local PSFs, the images are preprocessed so that they meet the
requirements imposed by the space-invariant convolutional
model given by Eq. (2). This consists in registering the images
and adjusting their illumination distribution following Ref. 4.
By carrying out this procedure, the remaining radiometric
differences between the images are assumed to be caused by
blur and noise. Unlike the case considered in Ref. 4, where a
relatively long lapse of time between the two image acquisitions
may possibly involve a potential structural change, in this study,
both the images z and g are originated from the same image or,
in practice, they are acquired one shortly after the other.
Therefore, no structural change is expected. Since image g is
registered and its illumination matched to z, we denote this
transformed auxiliary image as ĝ.

3.2 Estimation of the Local PSFs

In Sec. 2, we described the model for a spatially varying blur in
which we assume the PSF h to vary gradually, which means that
within small regions the blur can be locally approximated by
convolution with a space-invariant PSF. For this reason, we
approximate the global function h from Eq. (1) by interpolating
local PSFs estimated on a set of discrete positions. The main
advantage of this approach is that the global PSF needs not
be computed on a perpixel basis which is inherently time-
consuming.

The procedure for estimating the local PSFs is the following.
We divide the images z and ĝ with a grid of m ×m patches
[Fig. 3(a)]. In each patch p, we assume a convolutional blurring
model where an ideal sharp patch up originates from two
degraded patches zp and ĝp (for p ¼ 1; : : : ; m ×m). The
local blurring model is

zp ¼ hp � up þ n;

ĝp ¼ ĥp � up þ n̂; (2)

where * is the standard convolution and hp and ĥp are the con-
volution kernels or local PSFs. The noise (n and n̂) is assumed to
have a constant spectral density and a zero-mean Gaussian dis-
tribution of amplitude. Despite the fact that this may not be the
most accurate representation of the noise, because the retinal
images considered here are acquired by illuminating with a
flash, the resulting signal-to-noise ratio is high enough that in
the estimation of the PSFs, the impact of noise is not significant.

From this model, we can estimate the local PSFs with an
alternating minimization procedure as described in Ref. 4 but
applied locally. The general guideline is that the patch size
should be large enough to include retinal structures and much
larger than the size of the local PSF. In Sec. 4, we show further
analysis on the robustness of the method to these parameters.
Every local PSF is computed on each patch p by minimizing
the functional

arg min
up;hp;ĥp

�
1

2

��up�hp−zp
��2þ1

2

��up� ĥp− ĝp
��2

þλ1

Z
j∇upjdxdyþλ2

��zp� ĥp− ĝp�hp
��2�;hp;ĥpðs;tÞ≥0;

(3)

with respect to the ideal sharp patch up and the blur kernels hp
and ĥp. The blur kernel hpðs; tÞ is an estimate of hðs; t; x0; y0Þ,
where ðx0; y0Þ is the center of the current window zp, and k:k is
the l2 norm. The first and second terms of Eq. (3) measure the
difference between the input blurred patches (zp and ĝp) and the
sharp patch up blurred by kernels hp and ĥp. This difference
should be small for the correct solution. Ideally, it should
correspond to the noise variance in the image. Although up is
a restored patch, note that it is not used by our method, but dis-
carded. This is because our method does not work by perform-
ing local deconvolutions and sewing restored patches together,
which in practice would produce artifacts on the seams. Instead,
we perform a global restoration method explained in Sec. 3.5.
The two remaining terms of Eq. (3) are regularization terms with
positive weighting constants λ1 and λ2, which we have set fol-
lowing the fine-tuning procedure described in Ref. 4. The tuning
procedure consists of an optimization process where an artifi-
cially degraded retinal image is restored by varying λ and meas-
uring a restoration error. This way an optimal λ is obtained.
Typical values are λ1 ¼ ∼103 and λ2 ¼ ∼101. The third term
is the total variation of up. It improves stability of the minimi-
zation and from a statistical perspective, it incorporates prior
knowledge about the solution. The last term is a condition
linking the convolution kernels which also improves the numeri-
cal stability of the minimization. The functional is alternately
minimized in the subspaces corresponding to the images
and the PSFs. The estimated PSFs for the artificially degraded
[Fig. 3(a)] image are shown in Fig. 6(a).

3.3 Identifying and Correcting Nonvalid PSFs

3.3.1 Strategy based on eye-domain knowledge

The local PSF estimation procedure does not always succeeds.
Consequently, such nonvalid PSFs must be identified, removed,
and replaced. In our case, we replace them by an average of
adjacent valid kernels. The main reason why the PSF estimation
may fail is due to the existence of textureless or nearly homog-
enous regions bereft of structures with edges (e.g., blood
vessels) to provide sufficient information.14 To identify these
nonvalid PSFs, we devised an eye-domain knowledge strategy.
The incorporation of proper a priori assumptions and domain
knowledge about the blur into the method provides an effective
mechanism for a successful identification of poorly estimated
PSFs.

The optics of the eye is part of the imaging system, therefore
it is reasonable to assume that the PSF of the imaging system is
determined by the PSF of the eye. The retinal camera can indeed
be close to diffraction limited with a very narrow PSF, but the
optics of the eye is governed by optical aberrations that change
across the visual field18 that lead to an SV PSF. The typical PSFs
of the human eye, as reported in the literature,18,20 display dis-
tinct shapes in many cases displaying long tails’ evidence of the
inherent optical aberrations. What is common to all PSFs of the
human eye is that the energy is spread from a central lobe and
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decreases outwardly. In this paper, we assume that PSFs that do
not follow this general pattern are nonvalid PSFs which corre-
spond to patches where the estimation failed.

In order to prove this, we designed an artificial experiment
where we compare the estimated PSFs with the ground-truth
PSFs by using a kernel similarity measure S proposed by Hu
and Yang.21 The measure is based on the peak of the normalized
cross correlation between the two PSFs. The authors showed in
the paper that this measure is more accurate than the root mean
square error, especially because it is shift invariant. The measure
is defined as the blur kernel similarity Sðh; h̃Þ of two kernels,
h and ~h,

Sðh; h̃Þ ¼ max
γ

ρðh; h̃; γÞ; (4)

where ρð:Þ is the normalized cross-correlation function and γ is
the possible shift between the two kernels. Let τ represent
element coordinates, ρð:Þ is given by

ρðhp; h̃p; γÞ ¼
P

τhpðτÞ · h̃pðτ þ γÞ
khpk · kh̃pk

; (5)

where k · k is the l2-norm. Larger similarity values reflect more
accurate PSF estimation, thus better image restoration. The
graphical representation of the similarity measure S is shown
in Fig. 4(a). The darkest squares correspond to PSFs with the
lowest similarity score.

The way we determine a nonvalid PSF is by characterizing
the energy distribution along the local PSF space. We add the
PSF values along concentric squares of radius r to build an
energy distribution histogram fðrÞ, which is normalized to
sum to 1. In Fig. 4(b), we show the histograms for the energy
distribution characterization of the estimated PSFs from the arti-
ficially degraded retinal image [Fig. 3(a)]. To identify nonvalid
PSFs, i.e., PSFs that do not follow the pattern we have previ-
ously described, we compute a shape descriptor for fðrÞ defined
as the probability Pðr ≤ rmÞ,

Pðr ≤ rmÞ ¼
Xrm
0

fðrÞ · r; (6)

where rm is the mode of fðrÞ. This descriptor gives an indication
of how much a histogram is spread in relation to the peak (rm) of
the histogram. Particularly, it yields low values when the mode
is located in the first few bins of the histogram and large values
otherwise. This descriptor can be correlated with the PSF sim-
ilarity measure to determine how it discriminates valid and
nonvalid PSFs.

In Fig. 5, we plot the similarity measure S against Pðr ≤ rmÞ
for the estimated PSFs from two different retinal images which
have been artificially degraded. The correlation coefficient for
the two variables is −0.64. In addition to the correlation,
from the plot we note that most PSFs with high Pðr ≤ rmÞ
have low kernel similarity (S) values, which is an indication
that these are nonvalid or poorly estimated PSFs. A machine
learning algorithm or clustering technique that automatically
classifies nonvalid PSFs is out of the scope of this paper.
Instead, our aim is to show that the energy characterization
approach is sufficient to identify nonvalid PSFs, even at the
expense of a few valid ones. As we show in Sec. 4.1, this is

(a)

(b)

Fig. 4 (a) PSF similarity measure. (b) Characterization of estimated
local PSFs by energy distribution. Histograms plotted in white bars in
(b) have been labeled as valid PSFs based on the histogram proba-
bility descriptor (P) described in the text.
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not critical because the PSF changes smoothly throughout
the FOV.

The histograms plotted in white bars in Fig. 4(b) correspond
to PSFs with Pðr ≤ rmÞ < 0.3, which we have labeled as valid
PSFs. This means that we are favoring histograms skewed
toward the left side. This is based on our assumption of the pat-
tern that valid PSFs should follow. This correlates well with
the similarity measure. Note that most PSFs with low similarity
measure [darkest squares in Fig. 4(a)] have been correctly iden-
tified as nonvalid PSFs [black histograms in Fig. 4(b) and PSFs
labeled with boxes in Fig. 6(a)].

The procedure for correcting the nonvalid local PSFs consists
of replacing them with the average of adjacent valid kernels.
Without this correction, the reconstruction develops ringing
artifacts [see for example Fig. 11(b)]. The new set of valid
local PSFs after replacing the nonvalid ones for the artificially
degraded image is shown in Fig. 6(b).

3.4 PSF Interpolation

The computation of the SV PSF h is carried out by interpolating
the local PSFs estimated on the regular grid of positions. The
PSF values at intermediate positions are computed by bilinear
interpolation of four adjacent known PSFs,22 as shown in Fig. 7.
Indexing any four adjacent grid points as p ¼ 1; : : : ; 4 (starting
from the top-left corner and continuing clockwise), the SV PSF
in the position between them is defined as

hðs; t; x; yÞ ¼
X4
p¼1

αpðx; yÞhpðs; tÞ; (7)

where αp is the coefficients of bilinear interpolation. Let us
denote x1 and x2 as minimum and maximum x-coordinates
of the subwindow, respectively. Analogously, y1 and y2 are the
y-coordinates. Using auxiliary quantities

tx ¼
x − x1
x2 − x1

; ty ¼
y − y1
y2 − y1

; (8)

the bilinear coefficients are

α1 ¼ ð1 − tyÞð1 − txÞ; α2 ¼ ð1 − tyÞtx;
α3 ¼ tyð1 − txÞ; α4 ¼ tytx:

(9)

In light of the definition for an SV PSF in Eq. (7), we can
compute the convolution of Eq. (1) as a sum of four convolu-
tions of the image weighted by coefficients αpðx; yÞ

½Hu�ðx; yÞ ¼
Z

uðs; tÞhðs; t; x − s; y − tÞdsdt; (10)

¼
Z

uðs; tÞ
X4
p¼1

αpðs; tÞhpðx − s; y − tÞdsdt;

(11)

¼
X4
p¼1

Z
ðαpðs; tÞuðs; tÞÞhpðx − s; y − tÞdsdt;

(12)

¼
�X4
p¼1

½αpu� � hp
�
ðx; yÞ: (13)

In the same fashion, the operator adjoint to H (SV counter-
part of correlation) denoted by H� can also be defined in terms
of the sums of four convolutions weighted by the αp coeffi-
cients. These two operators are needed in all first-order minimi-
zation algorithms as the one used in the restoration stage (see
Ref. 23 for further details).

3.5 Restoration

Having estimated a reliable SV PSF, we proceed to deblur
the image. Image restoration is typically formulated within
the Bayesian paradigm, in which the restored image is sought
as the most probable solution to an optimization problem.

Fig. 6 (a) Estimated set of 5 × 5 local PSFs. (b) New set of local PSFs with nonvalid PSFs replaced
[compared with ground-truth set Fig. 3(b)]. Nonvalid PSFs have been labeled with a red square.
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The restoration can be described as the minimization of the
functional

min
u

�
1

2

��z −Hu
��2 þ λ

Z
j∇ujdxdy

�
; (14)

where z is the blurred observed image,H is the blurring operator
[Eq. (1)], u is the unknown sharp image, and λ is a positive regu-
larization constant, which we have set according to a fine-tuning
procedure.4 The tuning procedure consists in artificially degrad-
ing a retinal image and restoring it with Eq. (14) by varying λ.
Because the sharp original image is known we can compare it
against the restored image using a metric like the peak-signal-to-
noise ratio to determine an optimal value of λ. The first term
penalizes the discrepancy between the model and the observed
image. The second term is the regularization term which serves
as a statistical prior. As regularization we use total variation, a
technique that exploits the sparsity of image gradients in natural
images. At present, solving the convex functional of Eq. (14) is
considered a standard way to achieve close to state-of-the-art
restoration quality without excessive time requirements.24

We used an efficient method25 to solve Eq. (14) iteratively as
a sequence of quadratic functionals

uiþ1 ¼ arg min
u

�
1

2

��z −Hu
��2 þ λ

Z j∇uj2
2j∇uij

þ j∇uij
2

dxdy

�
:

(15)

The functional of Eq. (15) bounds the original function in
Eq. (14) and has the same value and gradient in the current
ui, which guarantees convergence to the global minimum.
To solve Eq. (15), we used the conjugate gradient method.17

The initial value of ui for i ¼ 0 is set to be equal to z. In
order to avoid numerical instability for areas with small gradient
(j∇uij approaching zero), we use a relaxed ϵ-form of the mini-
mized functional in Eq. (14), which implies that j∇uij < ϵ is
equal to ϵ.

As regards the restoration of color RGB retinal images, we
consider the following. The most suitable channel for PSF
estimation is the green because it provides the best contrast.26

This is mainly due to the spectral absorption of the blood in this
band, which yields the dark and well contrasted blood vessels.27

Conversely, the blue channel encompasses the wavelengths
most scattered and absorbed by the optical media of the
eye,28 therefore the image in this band has very low energy and
a relatively high level of noise. In the spectral zone of wave-
lengths larger than 590 nm, the light scattering on the red
blood cells and the light reflection from the eye structures
behind the vessel are dominant.29 This produces the red band
to be saturated and of poor contrast. As a result, we estimate
the SV PSF from the green channel of the RGB color image,
and later deconvolve every R, G, and B channels with the esti-
mated SV PSF to obtain a restored RGB color image.

4 Experiments and Results
We performed several experiments on artificially and naturally
degraded images to illustrate the appropriateness of the SV
approach for restoring blurred retinal images. Moreover, to
achieve an artifact-free restoration, we used our strategy for
detecting and replacing the nonvalid local PSFs.

4.1 Artificially Degraded Images

For the artificial experiment, we take a pair of images and
degrade them with a 5 × 5 grid of realistic PSFs plus Gaussian
noise (σ ¼ 10−6). The grid of PSFs was built upon realistic PSFs
estimated from real degraded retinal images following the
approach of Ref. 4. From the two input images, we restore
one, and the other is used exclusively for the purpose of PSF
estimation. We estimate the local PSFs by dividing the image
into overlapping patches on a 5 × 5 grid [as shown in Fig. 3(a)].
The estimated PSFs are shown in Fig. 6(a). Because the PSF
estimation may fail, we identify the nonvalid PSFs as described
in Sec. 3.3. We replace them with with the average of adjacent
valid kernels.

In Fig. 8(a), we show the restored artificial image with the
directly estimated PSFs. The effect of nonvalid PSFs is evident
in the poor quality of the restoration and the ringing artifacts. In
Fig. 8(b), we show the restoration with the proposed method,
where the nonvalid PSFs have been identified, removed, and
replaced by the average of adjacent PSFs. To evaluate the resto-
ration, we use the cumulative error histogram on a patch basis.
The error5 is the difference between a recovered image Ir with
the estimated kernels and the known ground-truth sharp image
Ig over the difference between the deblurred image Ikg with the
ground-truth kernels. The error is given by kIr − Igk∕kIkg − Igk.
In Fig. 8(c), we show the cumulative error histogram for three
restorations. H1 is the restoration with the directly estimated
PSFs. It is important to note that shifted local PSFs warp the
image which introduce additional artifacts and is the reason
for such a low performance with approximately 40% of patches
with an error lower than 2.5. After shifting the centroid of the
PSFs to the geometrical center [restoration H2 in Fig. 8(c)], the
reconstruction error is reduced significantly, about 60% of
patches have an error lower than 1.5. Finally, the restoration
(H3) with the removal of nonvalid PSFs increases significantly
with all patches now displaying an error lower than 1.5. This
means that after the nonvalid PSFs have been replaced the resto-
ration quality is significantly increased.

To determine the limitations and robustness of the proposed
method, we carried out several tests. First, we need to determine
an optimal patch size for accurately estimating the local PSF. A
patch that is too small compared to the kernel size may not have

Fig. 7 Because the blur changes gradually, we can estimate convo-
lution kernels on a grid of positions and approximate the PSF in the
rest of the image (bottom kernel) by interpolation from four adjacent
kernels.
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enough information and is likely to favor the trivial solution
(convolution with a delta). Conversely, a patch that is bigger
than necessary may hinder the SV approach in addition to
increasing the computational burden. In Fig. 9(a), we show
the mean similarity measure versus the image patch size. It is
important to note that a patch size of roughly four times the
kernel size may be sufficient for an accurate PSF estimation.
Increasing too much the patch size hinders the PSF estimation.

The second aspect to consider is under- and over-estimation
of the local PSF size. In Fig. 9(b), we show the mean patch
reconstruction error versus PSF size. As expected the error is
minimum when the size is similar to the true size, yet under-esti-
mating the PSF size is worse than over-estimating.

In relation to the SV characterization of the blur, we per-
formed the PSF estimation with a different number of kernels.
Initially with a coarse 2 × 2 grid increasing up to a 10 × 10 fine
grid (the 5 × 5 grid is the ground-truth). A similar behavior is
observed. Under-estimating the proper PSF grid size has a neg-
ative effect in that the SV nature of the blur is hardly identified
which yields an error above 6 for the whole image. In this case,
the error is not computed on a patch-basis because of the
variable grid size.

4.2 Naturally Degraded Images

All of the naturally degraded images used in the experiments
were acquired in pairs, typically with a time span between
acquisitions of several minutes. Initially, to show the limits
of the space-invariant approach we restored the blurred retinal
image from Fig. 10(a) with a single global PSF with the space-
invariant method we proposed in Ref. 4. This image corresponds
to the eye fundus of a patient with strong astigmatism, which
induces an SV blur as depicted by the image details shown
in Figs. 10(b)–10(e). The restoration is shown in Fig. 11(a)
and we can clearly observe various artifacts despite an increase
in sharpness in a small number of areas. In view of this, it is
evident that the space-invariant assumption does not hold in
such cases. In the following, we move to the SV approach.

To carry out the SV restoration, we estimated the local PSFs
on a 5 × 5 grid of image patches. From the estimated PSFs
shown in Fig. 12(a), we notice a clear variation in shape mainly
from the top-right corner where they are quite narrow, to the
bottom left corner where they are more spread and wide. This
variation is consistent with the spatial variation of the blur
observed in the retinal image of Fig. 10(a). We restored the

Fig. 8 (a) Restoration with the set of directly estimated PSFs shown in Fig. 6(a) (notice the artifacts due
to nonvalid PSFs) and (b) restoration with the new set of PSFs with nonvalid PSFs replaced shown in
Fig. 6. (c) Error histogram for evaluating the reconstruction using: H1—directly estimated PSFs, H2—
PSFs shifted toward the geometrical center, and H3—the new set of valid PSFs.
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Fig. 9 (a) Mean similarity measure versus patch size. (b) Mean reconstruction error versus local PSF
size. (c) Reconstruction error versus PSF grid size.
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image with these local PSFs that were estimated directly without
any adjustment. The restored image is shown in Fig. 11(b). One
immediately obvious feature is that in several areas the restora-
tion is rather poor, displaying ringing artifacts, whereas in others
it is to some extent satisfactory. The local poor-restoration is
linked to areas where the PSF estimation failed. By removing
and correcting these nonvalid local PSFs, we obtained a note-
worthy restoration shown in Fig. 11(c). Notice the overall
improvement in sharpness and resolution with small blood ves-
sels properly defined as shown by the image-details in the third
column of Fig. 13. It could be said that without the replacement
of the nonvalid PSFs the image quality after restoration is
certainly worse than the original degraded image (see second
column of Fig. 13).

To further demonstrate the capabilities of our method, addi-
tional restoration results on real cases from the clinical practice
are shown in the following figures. As we mentioned in Sec. 1, a
typical source of retinal image degradation comes from patients
with corneal defects in which the cornea has an irregular structure
[Fig. 1(a)]. This induces optical aberrations, which are mainly
responsible for the SV blur observed in the retinal image. The
image details shown in Fig. 1(b) reveal a significant improvement
in which the retinal structures are much sharper and enhanced. In
Fig. 14(a), a full color retinal image is shown, in which three
small hemorrhages are more easily discernible in the restored
image, along with small blood vessels. Another retinal image,
shown in Fig. 14(b), reveals a clear improvement in resolution
with a much finer definition of blood vessels.

Fig. 10 (a) Retinal image degraded with real SV blur given by strong astigmatism. (b), (c), (d), and
(e) zoomed regions to show the SV nature of the blur.

Fig. 11 (a) Space-invariant restoration, (b) SV restoration with directly estimated PSFs, and (c) SV resto-
ration with the new set of PSFs. The reader is strongly encouraged to view these images in full resolution
at http://www.goapi.upc.edu/usr/andre/sv-restoration/index.html.
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In addition, we processed retinal angiography images to test
our method against a different imaging modality. Ocular angi-
ography is a diagnostic test that documents, by means of photo-
graphs, the dynamic flow of dye in the blood vessels of the
eye.30 The ophthalmologists use these photographs both for
diagnosis and as a guide to patient treatment. Ocular angiogra-
phy differs from fundus photography in that it requires an
exciter–barrier filter set (for further details see Ref. 30). The reti-
nal angiography shown in Fig. 15 is degraded with a mild SV
blur that hinders the resolution of small—yet important—
details. The restoration serves to overcome this impediment; this
can be observed from the zoomed-detail of the restored image.

The image enhancement may be useful for the improvement of
recent analysis techniques for automated flow dynamics and
identification of clinical relevant anatomy in angiographies.31

Finally, another way to demonstrate the added value of
deblurring the retinal images is to extract important features,
in this case detection of blood vessels. Such a procedure is com-
monly used in many automated disease detection algorithms.
The improvement in resolution paves the way for a better seg-
mentation of structures with edges. This is in great part due to
the effect of the total variation regularization because it pre-
serves the edge information in the image. To carry out the detec-
tion of the retinal vasculature, we used Kirsch’s method.32 It is a
matched filter algorithm that computes the gradient by convo-
lution with the image and eight templates to account for all
possible directions. This algorithm has been widely used for

Fig. 12 (a) Estimated set of local PSFs from naturally degraded retinal image shown in Fig. 10(a). (b) Set
of local PSFs after replacing nonvalid PSFs. Nonvalid PSFs have been labeled with a red square.

Fig. 13 Details of restoration. From left to right: the original degraded
image, the SV restoration without correction of PSFs and the SV
restoration with the correction.

Fig. 14 Other retinal images restored with the proposed method.
(a) First row: original and restored full-size retinal images.
(b) Second and third rows: image details.
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detecting the blood vessels in retinal images.33 In Fig. 16, we
show the detection of the blood vessels from a real image of
poor quality image and its restored version using our proposed
method. A significant improvement in blood vessel detection is
achieved. Smaller blood vessels are detected in the restored
image, whereas the detection from the original image barely
covers the main branch of the vasculature.

5 Conclusion
In this paper, we have introduced a method for restoring retinal
images affected by SV blur by means of blind deconvolution. To
do so, we described a spatially variant model of blur in terms of
a convolution with a PSF that changes depending on its position.
Since the SV degradation changes smoothly across the image,

we showed that the PSF need not be computed for all pixels,
which is quite a demanding task, but for a small set of discrete
positions. For any intermediate position bilinear interpolation suf-
fices. In this way, we achieve an SV representation of the PSF.

The estimation of accurate local PSFs proved difficult due to
the very nature of the images; they usually contain textureless or
nearly homogenous regions that lack retinal structures, such as
blood vessels, to provide sufficient information. In this regard,
we proposed a strategy based on eye-domain knowledge to
adequately identify and correct such nonvalid PSFs. Without
this, the restoration results are artifact-prone with an overall
image quality that is worse than the original image. The pro-
posal has been tested on artificially and naturally degraded
retinal images coming from the clinical practice. The details
from the restored retinal images show an important enhance-
ment, which is also demonstrated with the improvement in
the detection of the retinal vasculature.

In summary, it seems clear that the SV restoration of blurred
retinal images is significant enough to leverage the images’
clinical use. Improving the visibility of subtle details like small
hemorrhages or small blood vessels may prove useful for dis-
ease screening purposes, follow-up monitoring, or early disease
detection. With the new challenges faced by clinical services in
the 21st century, automated medical image analysis tools are
mandatory—this work is a step toward that direction.

Acknowledgments
This research has been partly funded by the Spanish Ministerio
de Ciencia e Innovación y Fondos FEDER (project DPI2009-
08879) and projects TEC2010-09834-E and TEC2010-20307.
Financial support was also provided by the Grant Agency of
the Czech Republic under project 13-29225S. Authors are grate-
ful to Juan Luís Fuentes from the Miguel Servet University
Hospital (Zaragoza, Spain) for providing images. The first
author also thanks the Spanish Ministerio de Educación for
an FPU doctoral scholarship.

References
1. H. Bartling, P. Wanger, and L. Martin, “Automated quality evaluation

of digital fundus photographs,” Acta Ophthalmol. 87(6), 643–647
(2009).

2. P. Godara et al., “Adaptive optics retinal imaging: emerging clinical
applications,” Optom. Vision Sci. 87(12), 930–941 (2010).

3. J. Arines and E. Acosta, “Low-cost adaptive astigmatism compensator for
improvement of eye fundus camera,” Opt. Lett. 36(21), 4164–4166
(2011).

4. A. G. Marrugo et al., “Retinal image restoration by means of blind
deconvolution,” J. Biomed. Opt. 16(11), 116016 (2011).

5. A. Levin et al., “Understanding blind deconvolution algorithms,” IEEE
Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011).

6. P. Bedggood et al., “Characteristics of the human isoplanatic patch and
implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2),
024008 (2008).

7. R. Tutt et al., “Optical and visual impact of tear break-up in human
eyes,” Invest. Ophthalmol. Visual Sci. 41(13), 4117–4123 (2000).

8. J. Xu et al., “Dynamic changes in ocular zernike aberrations and tear
menisci measured with a wavefront sensor and an anterior segment
OCT,” Invest. Ophthalmol. Vis. Sci. 52(8), 6050–6056 (2011).

9. T. Costello and W. Mikhael, “Efficient restoration of space-variant blurs
from physical optics by sectioning with modified Wiener filtering,”
Digital Signal Process. 13(1), 1–22 (2003).

10. J. Bardsley et al., “A computational method for the restoration of images
with an unknown, spatially-varying blur,” Opt. Express 14(5), 1767–
1782 (2006).

Fig. 15 Restoration of a retinal angiography. First row: original and
restored full retinal images. Second row: image details.

Fig. 16 First row (from left to right): original and restored retinal
images. Second row: detection of blood vessels. Notice how the
small blood vessels are better detected in the restored image.

Journal of Biomedical Optics 016023-11 January 2014 • Vol. 19(1)

Marrugo et al.: Restoration of retinal images with space-variant blur

http://dx.doi.org/10.1111/aos.2009.87.issue-6
http://dx.doi.org/10.1097/OPX.0b013e3181ff9a8b
http://dx.doi.org/10.1364/OL.36.004164
http://dx.doi.org/10.1117/1.3652709
http://dx.doi.org/10.1109/TPAMI.2011.148
http://dx.doi.org/10.1109/TPAMI.2011.148
http://dx.doi.org/10.1117/1.2907211
http://dx.doi.org/10.1167/iovs.10-7102
http://dx.doi.org/10.1016/S1051-2004(02)00004-0
http://dx.doi.org/10.1364/OE.14.001767


11. S. Harmeling, M. Hirsch, and B. Scholkopf, “Space-variant single-
image blind deconvolution for removing camera shake,” Adv. Neural
Inf. Process. Syst. 23, 829–837 (2010).

12. O. Whyte et al., “Non-uniform deblurring for shaken images,” Int. J.
Comput. Vis. 98(2), 168–186 (2012).

13. A. Gupta et al., “Single image deblurring using motion density
functions,” in European Conf. on Computer Vision (ECCV 2010),
K. Daniilidis, P. Maragos, and N. Paragios, Eds., pp. 171–184,
Springer-Verlag, Crete, Greece (2010).

14. M. Tallón et al., “Space-variant blur deconvolution and denoising in the
dual exposure problem,” Inf. Fusion 14(4), 396–409 (2012).

15. N. Salem and A. Nandi, “Novel and adaptive contribution of the red
channel in pre-processing of colour fundus images,” J. Franklin Inst.
344(3–4), 243–256 (2007).

16. A. G. Marrugo and M. S. Millán, “Retinal image analysis: preprocess-
ing and feature extraction,” J. Phys.: Conf. Ser. 274(1), 012039 (2011).

17. G. Golub and C. Van Loan, Matrix Computations, Vol. 3, Johns
Hopkins University Press, Baltimore, Maryland (1996).

18. R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberra-
tions and point-spread functions of the human eye across the visual
field,” J. Opt. Soc. Am. A 15(9), 2522–2529 (1998).

19. F. Sroubek and J. Flusser, “Multichannel blind deconvolution of spatially
misaligned images,” IEEE Trans. Image Process. 14(7), 874–883 (2005).

20. R. Navarro, “The optical design of the human eye: a critical review,”
J. Optom. 2(1), 3–18 (2009).

21. Z. Hu and M.-H. Yang, “Good regions to deblur,” in European Conf. on
Computer Vision (ECCV 2012), pp. 59–72, Springer-Verlag (2012).

22. J. G. Nagy and D. P. O’Leary, “Restoring images degraded by spatially
variant blur,” SIAM J. Sci. Comput. 19(4), 1063–1082 (1998).

23. M. Sorel, F. Sroubek, and J. Flusser, “Towards super-resolution in
the presence of spatially varying blur,” in Super-Resolution Imaging,
P. Milanfar, Ed., pp. 187–218, CRC Press, Boca Raton, Florida (2010).

24. P. Campisi and K. Egiazarian, Blind Image Deconvolution: Theory and
Applications, CRC Press, Boca Raton, Florida (2007).

25. A. Chambolle and P. L. Lions, “Image recovery via total variation
minimization and related problems,” Numer. Math. 76(2), 167–188
(1997).

26. A. Hoover and M. Goldbaum, “Locating the optic nerve in a retinal
image using the fuzzy convergence of the blood vessels,” IEEE Trans.
Med. Imaging 22(8), 951–958 (2003).

27. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal
camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt.
Express 3(1), 48–54 (2012).

28. M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at
the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).

29. V. Vucea et al., “Blood oxygenation measurements by multichannel
reflectometry on the venous and arterial structures of the retina,”
Appl. Opt. 50(26), 5185–5191 (2011).

30. P. Saine and M. Tyler, Ophthalmic Photography: Retinal Photography,
Angiography, and Electronic Imaging, Butterworth-Heinemann,
Woburn, Massachusetts (2002).

31. T. Holmes et al., “Dynamic indocyanine green angiography measure-
ments,” J. Biomed. Opt. 17(11), 116028 (2012).

32. R. A. Kirsch, “Computer determination of the constituent structure of
biological images,” Comput. Biomed. Res. 4(3), 315–328 (1971).

33. M. Al-Rawi, M. Qutaishat, and M. Arrar, “An improved matched filter
for blood vessel detection of digital retinal images,” Comput. Biol. Med.
37(2), 262–267 (2007).

Andrés G. Marrugo received the BE degree (summa cum laude) in
mechatronical engineering from the Technological University of
Bolívar, Cartagena, Colombia, in 2008, the MSc in photonics, and
the PhD in optical engineering from the Technical University of
Catalonia, Barcelona, Spain, in 2009 and 2013, respectively. He is
currently with the Technological University of Bolívar. He is a member
of SPIE, the Spanish Optical Society, and the European Optical
Society.

María S. Millán received the PhD in physics in 1990 and is a full
professor of the College of Optics and Optometry in the Technical
University of Catalonia, Barcelona, Spain. Her research work on
image processing involves optical and digital technologies, algo-
rithms, and development of new applications to industry and
medicine. She has been a representative of the Spanish Territorial
Committee in the International Commission for Optics. She is
a member of the Optical Society of America, a fellow member of
SPIE and a fellow member of the European Optical Society.

Michal Šorel received the MSc and PhD degrees in computer sci-
ence from Charles University in Prague, Czech Republic, in 1999
and 2007, respectively. From 2012 to 2013 he was a postdoctoral
researcher at Heriot-Watt University in Edinburgh, Scotland, and
the University of Bern, Switzerland. Currently he is a research fellow
in the Institute of Information Theory and Automation, Academy of
Sciences of the Czech Republic.

Filip Šroubek received the MS degree in computer science from the
Czech Technical University, Prague, Czech Republic, in 1998 and the
PhD degree in computer science from Charles University, Prague,
Czech Republic, in 2003. From 2004 to 2006, he was on a postdoc-
toral position in the Instituto de Optica, CSIC, Madrid, Spain. In 2010
and 2011, he was the Fulbright visiting scholar at the University
of California, Santa Cruz. He is currently with the Institute of
Information Theory and Automation of the Academy of Sciences of
the Czech Republic.

Journal of Biomedical Optics 016023-12 January 2014 • Vol. 19(1)

Marrugo et al.: Restoration of retinal images with space-variant blur

http://dx.doi.org/10.1016/j.inffus.2012.08.003
http://dx.doi.org/10.1016/j.jfranklin.2006.09.001
http://dx.doi.org/10.1088/1742-6596/274/1/012039
http://dx.doi.org/10.1364/JOSAA.15.002522
http://dx.doi.org/10.1109/TIP.2005.849322
http://dx.doi.org/10.3921/joptom.2009.3
http://dx.doi.org/10.1137/S106482759528507X
http://dx.doi.org/10.1007/s002110050258
http://dx.doi.org/10.1109/TMI.2003.815900
http://dx.doi.org/10.1109/TMI.2003.815900
http://dx.doi.org/10.1364/BOE.3.000048
http://dx.doi.org/10.1364/BOE.3.000048
http://dx.doi.org/10.1088/0031-9155/47/2/301
http://dx.doi.org/10.1364/AO.50.005185
http://dx.doi.org/10.1117/1.JBO.17.11.116028
http://dx.doi.org/10.1016/0010-4809(71)90034-6
http://dx.doi.org/10.1016/j.compbiomed.2006.03.003

