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Abstract. Domain adaptation is a technology enabling aided target recognition and other algo-
rithms for environments and targets with data or labeled data that is scarce. Recent advances in
unsupervised domain adaptation have demonstrated excellent performance but only when the
domain shift is relatively small. We proposed targeted adversarial discriminative domain adap-
tation (T-ADDA), a semi-supervised domain adaptation method that extends the ADDA frame-
work. By providing at least one labeled target image per class, used as a cue to guide the
adaption, T-ADDA significantly boosts the performance of ADDA and is applicable to the chal-
lenging scenario in which the sets of targets in the source and target domains are not the same.
The efficacy of T-ADDA is demonstrated by cross-domain, cross-sensor, and cross-target experi-
ments using the common digits datasets and several aerial image datasets. Results demonstrate
an average increase of 15% improvement with T-ADDA over ADDA using just a few labeled
images when adapting to a small domain shift and afforded a 60% improvement when adapting
to large domain shifts. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.038504]
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1 Introduction

Aided target recognition (AiTR) focuses on developing automatic target recognition (ATR) to
aid a human user.1 Three examples of AiTR include discriminability with data fusion,2 extend-
ibility over data sparsity,3 and interpretability from data compression.4 Data fusion supports
AiTR through enhancing target recognition by combining data from two or more sensors.
Data fusion has demonstrated numerous capabilities for applications such as infrared (IR) and
millimeter-wave IR for object detection,5 electro-optical (EO) and IR for object tracking,6 and
EO and radar for enhanced situation awareness.7 Combing EO with radar signatures allows for
machine processing of multiresolution data with sparsity and complexity.8 These data fusion
methods afford interpretability of data for task success. Examples include interpretability over
compressed imagery data,9 3D volumetric lidar data,10 and classifier assessment.11 One of the
challenges is to develop efficient methods for large volumes of data from which developments in
deep learning (DL) have become popular.

Deep convolutional neural networks (CNNs) trained on large datasets have demonstrated
excellent performance on computer vision tasks such as object classification,12 change detec-
tion,13 and ATR14 from EO and radar data. However, the data distribution in the target domain,
where testing takes place, may be different from the data distribution in the source domain,
where training occurs. Domain adaptation (DA) aims to overcome the domain shift, or dataset
bias,15 that reduces classifier performance when classification takes place in a target domain. The
shift in the data distribution may be due to differences in illumination, sensor type, perspective,
background, and target classes. Conventional deep transfer learning utilizes pretrained CNN
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models for feature extraction and performs fine-tuning for training on a labeled dataset of inter-
est. Unsupervised DA deals with unlabeled data in the target domain after training with labeled
data in the source domain. Many unsupervised DA approaches have demonstrated excellent
performance, but only when the domain shift is small.

For applications such as transferring knowledge from one set of targets to another set of
targets, any unsupervised DA approach is doomed to fail as the class correspondence is typ-
ically ambiguous and without further information, and an unsupervised DA method will have
limited knowledge on how the adaptation should proceed. Figure 1 shows an example of DA
ambiguity. In Fig. 1(a), the red uppercase letters represent the source domain, and the blue
lowercase letters represent the target domain. For an unsupervised DA, the target feature vec-
tors in classes a, b, and c will be adapted to nearby source classes A, B, and C, respectively.
Figure 1(b) shows what an unsupervised DA approach can achieve. Without knowing the cor-
respondence between the classes in the source and target domains, adjacent classes in the
source and target domains will be merged, thus representing the best that an unsupervised
DA method can achieve. Obviously, the adaptation results are not necessarily correct without
a domain mapping.

The need for the algorithm to know where the target classes a, b, and c should be adapted to
for correct adaptation16 motivates the targeted adversarial discriminative DA (T-ADDA)
approach. T-ADDA assumes the availability of at least one labeled target image per target class
(i.e., one labeled target feature vector per class). The labeled target feature vectors are indicated
by the dark blue, underlined lowercase letters in Fig. 2(a). By enforcing all labeled target feature
vectors to move toward their targeted source class centers as indicated by the dashed lines,
T-ADDA adapts the target model, so the resulting target classes in the target domain correctly
match the corresponding source classes as shown in Fig. 2(b).

This paper is organized as follows. Section 2 provides a brief review of unsupervised DA
approaches and a deeper look into the unsupervised DA approach that T-ADDAwas built upon,
i.e., Adversarial Discriminative DA (ADDA). The proposed T-ADDA is detailed in Sec. 3 and
followed by implementation methods in Sec. 4. In Sec. 5, four experimental results using digit

Fig. 1 Illustration of unsupervised DA.

Fig. 2 Illustration of the idea that motivates T-ADDA.
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datasets and real aerial image datasets (AID) are presented. Finally, concluding remarks are
provided in Sec. 6.

2 Literature Review of Domain Adaptation

2.1 Unsupervised Domain Adaptation

Subspace alignment (SA)17 is one of the early unsupervised DA approaches that performs
a transformation on the source and target domain representations to generate features that are
domain invariant. Other methods that perform subspace alignment include CORAL18 and mani-
fold aligned label transfer DA.19 Adversarial learning is often used by DA methods. The domain
adversarial neural networks method20 uses a gradient reversal layer to learn features that are class
discriminative and domain invariant. Domain symmetric networks (SymNets)21 are based on a
symmetric design of source and target task classifiers and adversarial training with a domain
confusion scheme for learning domain invariant representations.

The work that is most relevant to the proposed T-ADDA semi-supervised domain adaptation
method is the unsupervised DA framework by Tzeng.22 In fact, the T-ADDA approach can be
considered an extension of ADDA from unsupervised learning to semi-supervised learning.

ADDA is a generalized framework for adversarial DA that combines discriminative model-
ing, untied weight sharing, and a generative adversarial network (GAN) loss. ADDA first learns
a discriminative representation using the labels in the source domain and then a separate encod-
ing that maps the target data to the same space using an asymmetric mapping learned through a
domain-adversarial loss. It is a simple, flexible, yet surprisingly powerful approach that achieves
state-of-the-art visual adaptation results on standard DA datasets.

All of the above unsupervised DA methods assume that the initial domain shift is relatively
small and that adjacent classes in the source and target domains correspond to the same target
class. However, a small domain shift assumption may not be true if the source and target domains
are very different. When the domain shift is large, extra information in terms of a few labeled
target images is needed, and it is known as semi-supervised DA (SSDA).

2.2 Semi-Supervised Domain Adaptation

SSDA is an important task; however, it has not been fully explored with regard to DL-based
methods.23 One notable SSDAwork was the minimax entropy DA by Saito et al.23 In minimax
entropy DA, domain invariant class prototypes are defined as the weight vectors of the classifier
C, which takes normalized feature vectors as its input and outputs the probability of classes with
a softmax activation function. Then, the weight vectors are updated during training to maximize
the entropy measured by the similarity between W, the weight vectors associated with the clas-
sifier C, and the unlabeled target features. Next, the feature extractor F is updated to minimize
the entropy on unlabeled target examples to yield discriminative features extracted by F. At the
same time, C and F are trained to classify both labeled source examples and a few labeled target
examples correctly by minimizing the cross-entropy.

2.3 Adversarial Discriminative Domain Adaptation

ADDA21 uses a GAN framework along with an adversarial loss for DA. Details of ADDA are
provided next to set the stage for describing the proposed T-ADDA. To begin, we need source
images Xs and labels Ys drawn from a source domain distribution psðx; yÞ and target images Xt

drawn from a target domain distribution ptðx; yÞ, where there are no labels available. The goal is
to learn a target feature encoder Mt and a target classifier Ct that can correctly classify target
images into one of K categories at test time, despite the lack of target domain annotations. Since
direct supervised learning on the target is not possible, DA instead learns a source feature
encoder Ms along with a source classifier Cs and then adapts that model for use in the target
domain. The adaptation is accomplished by minimizing the distance between the two empirical
source and target distributions MsðXsÞ and MtðXtÞ and setting Ct ¼ Cs.
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The source classification model is trained using the standard supervised cross-entropy loss as

EQ-TARGET;temp:intralink-;e001;116;723 min
Ms;Cs

Lcross−entropyðXs; YsÞ ¼ Eðxs;ysÞ∼ðXs;YsÞ

�
−
XK
k¼1

l½k¼ys� log CsðMsðxsÞÞ
�
: (1)

To minimize the empirical source (MsðXsÞ) and target (MtðXtÞ) distributions, the adversarial
learning of ADDA consists of alternating the following two optimizations:

EQ-TARGET;temp:intralink-;e002;116;649min
D

LadvD
ðXs;Xt;Ms;MtÞ; (2)

and

EQ-TARGET;temp:intralink-;e003;116;601min
Mt

LadvM
ðXt; DÞ; (3)

where D is a domain discriminator that classifies whether a data point is drawn from the source
or target domain. Equation (2) states that the domain discriminator D is optimized according to
an adversarial domain discrimination loss function LadvD

, which is defined as

EQ-TARGET;temp:intralink-;e004;116;527LadvD
¼ −Exs∼Xs

½log DðMsðxsÞÞ� − Ext∼Xt
½logð1 −DðMtðxtÞÞÞ�; (4)

and Eq. (3) states that the target encoderMt is optimized according the GAN loss function LGAN,
which is defined as

EQ-TARGET;temp:intralink-;e005;116;471LadvM
¼ LGAN ¼ −Ext∼Xt

½logðDðMtðxtÞÞÞ�: (5)

It is worth noting that the source encoder Ms is optimized during pretraining and is fixed
during the above adversarial learning process.

3 Proposed T-ADDA Approach

3.1 Assumption

T-ADDA, as illustrated in Fig. 2, makes two assumptions. The first assumption is that the source
and target features of different target classes are well separated and clustered, and the second
assumption is that all target feature points of the same classes will follow the movements of
the few labeled target feature points to result in the desired adaptation result. The success of
T-ADDA relies on the validity of the above two assumptions.

To enforce the validity of the first assumption, the combined cross-entropy and center loss
function24 is adopted to encourage separation and clustering of source feature vectors. However,
it is not straightforward to enforce clustering of target feature vectors, which are encoded by the
initial target feature extractor (target feature encoder). In T-ADDA, clustering of target feature
vectors is supported experimentally by carefully choosing the initial target feature encoder.

The second assumption, that all target feature points of the same classes will follow the move-
ments of the few labeled target feature points to result in the desired adaptation result, is enforced
by adversarial learning as described in ADDA and is validated by extensive experiments shown
in the results.

3.2 Targeted Adversarial Discriminative Domain Adaptation

When there are no labeled target images, the proposed T-ADDA is identical to ADDA reviewed
in Sec. 2. When few labeled target images are available, three types of input data can be dis-
tinguished in T-ADDA: (1) the labeled source data Xs, (2) the target data Xt, and (3) the few
labeled target dataX 0

t ⊂ Xt. The use ofXs andXt in T-ADDA is identical to ADDA as described
in Eqs. (4) and (5). When few labeled target images are available, i.e., X 0

t is not an empty set, the
target encoder Mt defined in Sec. 2 is additionally optimized according to the following feature
class matching (FCM) loss function using X 0

t.
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EQ-TARGET;temp:intralink-;e006;116;735LFCM ¼
Xn
t¼1

kSCt
− x 0

tk22; (6)

where x 0
ti is the feature vector extracted from the i’th labeled target image and SCt

is the cor-
responding source feature class centers, which are extracted after the source model is trained.
Figure 3 shows the overview of the proposed T-ADDA approach, which consists of three steps.
In Step 1, a source model is pretrained using the source domain training dataset with either cross-
entropy or combined cross-entropy and center loss functions, which is described in the next
subsection. Once the source model is pretrained, T-ADDA computes and saves the center of
features in each class. The key contribution of the proposed T-ADDA is performed in Step
2 and attempts to adapt a target encoder Mt so that the features extracted by it cannot be dis-
tinguished from the features extracted by the source encoder Ms. In this step, LadvD

, LadvM
, and

LFCM, given in Eqs. (4)–(6), respectively, are optimized alternately. Finally, in Step 3, the target
model is formed by the adapted target encoder concatenated with the classification layer(s) of the
source model and is used to classify images in the target domain.

3.3 Center Loss

Through supervised training, via minimizing categorical cross entropy loss, discriminative fea-
tures are guaranteed to be generated, but well-clustered features are not guaranteed. The idea of
center loss was originally presented in Ref. 24 and was adopted in Ref. 19 for DA. It was shown
that by combining cross-entropy loss and center-loss functions, well clustered features are gen-
erated, and the accuracy of classifiers can be improved,24 which is confirmed by our experiments.
Thus, in this section, the center loss is presented and then employed throughout our experiments
for improved source model performance and, thus, improved T-ADDA performance.

Center loss function is formulated as

EQ-TARGET;temp:intralink-;e007;116;421LC ¼ 1

2

Xm
i¼1

kxi − Cyik22; (7)

where xi and yi are the i’th feature vector and its label and Cyi ∈ Rd denotes the yi’th class center
of deep features. The formulation with Eq. (7) encourages each encoded feature point to move
toward the corresponding class center Cyi. In Ref. 24, attention was paid to updating the dynamic
class center during the training process. However, T-ADDA adopts a two-stage training process
to simplify the implementation. In the first stage, the source model is trained using the cross-

Fig. 3 Overview of the proposed T-ADDA approach.
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entropy loss function only and computes the centers of all classes to be used in Eq. (6) to encour-
age feature clustering. In the second stage, the computed class centers were then used in Eq. (6)
to compute center loss. The complete loss to be minimized is the combination of cross entropy
and center loss given as

EQ-TARGET;temp:intralink-;e008;116;506L ¼ λ · LC þ LS; (8)

where LS denotes the standard cross entropy loss and LC is the center loss given in Eq. (7). A
visual comparison of features resulting from cross entropy loss and combined cross entropy and
center loss is given in Fig. 4. Figure 4 uses MNIST data and a LeNet++ source model24 to
generate the plots by setting the feature dimension to be two. We note that, in T-ADDA, the
computed source class centers are used in the feature matching loss function given in
Eq. (6), where the source class centers are denoted by SCt

.

4 Implementation

The pseudo code of the proposed T-ADDA approach is provided in Fig. 5.

Fig. 4 MNIST features obtained using (a) cross-entropy and (b) combined center and cross-
entropy loss as the function to be minimized.

Given source domain data X_source, source class centers sourceCenters, unlabeled 
target domain data Y_target_unlabeled, labeled target domain data Y_target_labeled, as 
well as the following neural networks sourceEncoder, targetEncoder, discriminator, gan, 
and fcm. The loss functions employed by discriminator, gan, and fcm are eq.(4), eq.(5) 
and eq.(6) respectively. Denote Y_target the union of Y_target_unlabeled and 
Y_target_labeled. 
============================================= 
for epoch = 1 to epoch_max 

for batch = 1 to batch_max 

sourceFeatures = sourceEncoder(X_source) 
targetFeature = targetEncoder(Y_target) 
discriminator.train_on_batch([sourceFeatures, targetFeature], 

                                                  disc_y=[1,…,1,0,…,0]) 

gan.train_on_batch(Y_target, gen_y=[1,…,1]) 

fcm.train_on_batch([Y_target_labeled, sourceCenters], [dummy_y , 
dummy_y]) 

end_batch 

end_epoch

Fig. 5 Pseudo code of the proposed T-ADDA.
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For the experimental results involving digits datasets (Secs. 5.2.1–5.2.2), we constructed the
source model based on LeNet++.24 Table 1 shows the summary of our LeNet++ based model,
which is a variation of LeNet++ by incorporating batch normalization and dropout layers. The
source encoder is formed from the InputLayer up to the layer ip1. The dimension of the feature
space is fixed at 500. The dense layer ip2 serves as a linear 10 class classifier. The LeNet++
based source models, after being trained with source domain datasets, are used as the initial
target models for adaptation in Experiments 1 and 2 involving digit datasets.

For the experimental results involving real AID (Secs. 5.2.3–5.2.4), we built our source model
based on ImageNet25 pretrainedmodels, as we found that the LeNet++ based model was not able to
extract well-separated and clustered features. Specifically, we employed the ImageNet pretrained
DenseNet26 model provided in Keras, and the layer GlobalMaxPooling2D was adopted to reduce
the CNN features from dimension 7 × 7 × 1024 to 1024 to form the base model. Then, a dense
(fully connected) layer fc1 was added to form the source encoder. To complete the source clas-
sification model, we added another fully connected layer fc2 to the source encoder as the classifier.
The purpose of the fc1 layer is to further reduce the feature space dimension to a pre-determined
size, in this case, 256. To construct the initial target encoder, two strategies were considered:
(1) adopting the source encoder as the initial target encoder and (2) concatenating the base model

Table 1 Summary of the implemented LeNet++ based model.

Layer (type) Output shape #Parameters

Input (InputLayer) (none,32,32,3) 0

Conv2D_01 (conv2D) (none,32,32,32) 2432

BN_01 (BatchNorm) (none,32,32,32) 128

Conv2D_02 (Conv2D) (none,32,32,32) 25632

BN_02 (BatchNorm) (none,32,32,32) 128

Max_pooling2d_02 (MaxPooling2D) (none,16,16,32) 0

Conv2D_03_1 (Conv2D) (none,16,16,64) 51264

BN_03_1 (BatchNorm) (none,16,16,64) 128

Max_pooling2d_02 (MaxPooling2D) (none,16,16,32) 0

Conv2D_03_2 (Conv2D) (none,16,16,64) 102464

BN_03_2 (BatchNorm) (none,16,16,64) 256

Max_pooling2d_03 (MaxPooling2D) (none,8,8,64) 0

Conv2D_04_1 (Conv2D) (none,8,8,128) 204928

BN_04_1 (BatchNorm) (none,8,8,128) 512

Conv2d_04_2 (Conv2D) (none,8,8,128) 409728

Max_pooling2d_04 (MaxPooling2D) (none,4,4,128) 0

Activation_04 (Activation) (none,4,4,128) 0

BN_04_2 (BatchNorm) (none,4,4,128) 512

Flatten (Flatten) (none,2048) 0

Dropout (Dropout) (none,2048) 0

IP1 (Dense) (none,500) 1024500

IP 2 (Dense) (none,10) 5010

Total Parameters: 1,827,750
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with the fc1 layer from the source encoder. The first strategy tunes the feature extraction CNN
toward classifying the specific source classes, and the second strategy keeps the feature extractor
intact. In our experiments, we found that the first approach worked better when the source and
target domains shared the same object classes, and the second approach was preferred when new
classes were introduced in the target domain. We believe that the reason is that when source and
target domains share the common target classes, the fine-tuned feature extraction layers are able to
extract well separated and clustered features in the source domain as well as in the target domain.
However, if new classes appear in the target domain, since the feature extraction layers are fine-
tuned toward extracting features that well separate the source classes, it may not have the power to
extract the features that distinguish different target classes in the target domain. In this case, it is
preferred to retain all feature extraction layers that are pretrained using a large amount of the
ImageNet dataset.

Next, the network discriminator in both cases consists of three dense layers as shown
in Fig. 6.

The network GAN is formed by concatenating targetEncoder and discriminator, and only the
targetEncoder is trainable. Finally, the network FCM is implemented similarly to how the source
model is trained by combined center loss and cross-entropy loss functions. However, in FCM,
only the center loss is employed. The label dummy_y is randomly generated as no label is
required for employing the center loss function.

5 Experimental Procedures and Results

5.1 Datasets

The proposed T-ADDA is first evaluated in two experiments involving three datasets with 10
digit classes and then tested in two experiments involving six aerial datasets. Brief descriptions
about each dataset are provided below.

5.1.1 Modified National Institute of Standards and Technology

The Modified National Institute of Standards and Technology (MNIST)27 database consists of
70,000 grayscale handwritten digit images. Among them, 60,000 images are sequestered for the
training set, and the remaining 10,000 are saved for the test set. The MNIST database is com-
monly used for developing and testing various image processing systems.

5.1.2 Street View House Numbers

The Street View House Numbers (SVHN)28 dataset, obtained from house numbers in Google
Street View images, is a real-world image dataset for developing machine learning and object
recognition algorithms with minimal requirements on data preprocessing and formatting. The
image size of SVHN is 32 × 32. It can be seen as similar in style to MNIST (e.g., the images are
of small cropped digits), but it incorporates an order of magnitude more labeled data (over
600,000 digit images) and comes from a significantly harder, unsolved, real world problem

Fig. 6 Structure of the implemented discriminator in T-ADDA.
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(recognizing digits and numbers in natural scene images). Among them, 73,257 images are for
training, and 26,032 are for testing.

5.1.3 Devanagari Handwritten Character

The Devanagari handwritten character (DHC) dataset29 is a database of handwritten Devanagari
characters consisting of 46 classes of characters, including ten Devanagari digits, with 2000
examples each. The image size of DHC dataset is 32 × 32.

In Fig. 7, example digits images from MNIST, SVHN, and DHC databases are provided for
comparison. We note that that the same digits in Arabic and Devanagari numerals do not nec-
essarily have the same meaning. For example, the Arabic digit 9 resembles Devanagari digit 1

5.1.4 Aerial Image Datasets

AID30 contains over 10,000 aerial images from 30 classes. The image size is 600 × 600 pixels,
obtained at multiple ground sampling distances (GSDs) (8 to 0.5 m). The source is Google Earth
images from various countries.

5.1.5 The University of California Merced

The University of California Merced (UCM) landmass dataset31 has 2100 images representing
21 classes with 100 images per class. The UCM images are of size 256 × 256 pixels, at GSD of
1 foot∕pixel. They are manually extracted images from the United States Geological Survey
National Map Urban Area Imagery.

5.1.6 xView

The xView 2018 dataset32 is one of the largest publicly available datasets of overhead imagery.
It contains around 1 million labeled object samples divided across 60 classes with the option of
using either 3-band or 8-band imagery. The images were obtained from the WorldView-3
satellite at 0.3-m ground sample distance. The xView dataset is an imbalanced dataset that has
some classes with a few instances and some with many instances.

5.1.7 DOTA

The DOTA dataset33 is a large-scale dataset designed for the development and evaluation of
object detectors for aerial imagery. It contains 2806 aerial images from different sensors and
platforms. Image sizes range from about 800 × 800 to 4000 × 4000 pixels and contain objects
exhibiting a wide variety of scales, orientations, and shapes. There are sixteen object categories
in DOTA-v1.0, including plane, ship, and storage tank.

Fig. 7 Arabic numerals in (a) MNIST and (b) SVHN databases and Devanagari numerals in
(c) DHC database.
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5.1.8 NWPU

The NWPU-RESISC45 dataset34 consists of 31,500 images divided into 45 scene classes. Each
class includes 700 images that have a size of 256 × 256 pixels. The spatial resolution varies
from about 30 to 0.2 m per pixel for most of the classes except for island, lake, mountain, and
snowberg, which have lower spatial resolutions.

5.1.9 Remote Sensing Image Classification Benchmark

The Large-Scale Remote Sensing Image Classification Benchmark (RSI-CB) dataset35 consists
of two parts: the RSI-CB256 dataset and the RSI-CB128 dataset. They both have spatial res-
olutions of 0.3 to 3 m. RSI-CB256 contains 35 categories and more than 24,000 images of size
256c256. RSI-CB128 contains 45 categories and more than 36,000 images of size 128 × 128.
Both datasets have six common categories: agricultural land, construction land and facilities,
transportation and facilities, water and water conservancy facilities, woodland, and other land,
and there are various subcategories within them.

5.2 Experiments and Results

Three transfer learning scenarios are considered in four experiments. Each experiment, including
the considered scenario, experimental procedure, and experimental result, is provided below.

5.2.1 Experiment 1

In the first experiment, we consider the transfer learning from simulated data to measured data.
For this scenario, SVHN is employed as the simulated data, as they were collected from printed
house numbers, and MNIST is employed as the measured data, as they were hand-written digits.
In the first stage, we performed source model training using cross-entropy as the loss function to
be minimized. Then, we computed and saved the centers of source classes Si, i ¼ 1; : : : ; K, in
the feature space, where K is the number of source classes. Next, we performed source model
training by minimizing the combined cross-entropy and center loss function. This completed the
first stage of source model training.

In the second stage, adversarial DA, we used the source model as the initial target model
followed by randomly selecting N target images for labeling, 10 ≥ N ≥ 0 and then performed
T-ADDA. When N equals 0, it reduces to ADDA. This process was repeated 10 times, and the
results were averaged together. Finally, in the last stage, we combined the classification layer
of the source model and the adapted target encoder to evaluate the performance of the target
model before and after adaptation. Table 2 shows the common settings used in Experiment 1
and Experiment 2.

The accuracy of the cross entropy trained source classifier on source validation data is
92.86%, and the accuracy of the combined cross entropy and center loss trained source classifier
on source validation data is 93.65%. Intuitively, these two values can be used as the upper bounds
of target classifier performance after adaptation. Table 3 and Fig. 8 show the numerical and
graphical results of the experiment. Clearly, T-ADDA is very effective with an improved per-
formance of 3% to 18% over ADDAwhen N is increased from 1 to 10. In addition, we observe
that the standard deviation decreases with increased N. This indicates that the target images that
are selected for labeling have an impact on the adaptation result. How to effectively select target
images for labeling within a given selection budget is a topic to investigate in the future. Also, the
results showed the combined cross entropy and center loss consistently outperformed cross
entropy loss by 2% to 4%. This indicates that a better clustered source domain is beneficial
to performing DAvia T-ADDA. Figure 9 shows two t-distributed stochastic neighbor embedding
(t-SNE) visualizations of the source domain containing features of the ten digits classes, and the
t-SNE visualization of features in the target domain. In Fig. 9(a), features are extracted from the
cross-entropy trained source model, in Figs. 9(b) and 9(c), features are extracted from the com-
bined cross-entropy and center loss trained source model. We note that the target features
extracted from the cross-entropy trained source model are very similar to the ones extracted
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Table 3 Numerical results of Experiment 1: SVHN to MNIST adaptation.

N source
model

Source
only 0 (ADDA) 2 4 6 8 10

Cross-entropy 0.599 0.715 ±
0.050

0.799 ±
0.026

0.846±0.012 0.877 ±
0.010

0.897 ±
0.009

0.907 ±
0.005

Center loss 0.616 0.755 ±.027 0.824 ±
0.020

0.874 ±
0.008

0.901 ±
0.008

0.915 ±
0.007

0.929 ±
0.005

Fig. 8 Graphical result of Experiment 1.

Table 2 Settings employed in the first two experiments.

Datasets Digit datasets (MNIST, SVHN, and DHC)

Base model LeNet++ based

Input size 32 × 32 × 3

Feature space dimension 256

Epochs for source training 11

Optimizer SGD

Source training learning rate Cross-entropy Center-loss

0.001 0.001

λ N/A 0.05

Discriminator learning rate 0.002

GAN network learning rate 0.0002

FCM network learning rate 0.002

Epochs for adaptation 61

Chen et al.: Targeted adversarial discriminative domain adaptation

Journal of Applied Remote Sensing 038504-11 Jul–Sep 2021 • Vol. 15(3)



from the combined cross-entropy and center loss trained source model; thus, it is not shown.
It is worth noting that the target features are well separated and clustered in this case. Also notice
that, in both cases, the performance of T-ADDAwhen 10 target images (∼1% of the total target
images) are randomly selected for labeling approaches the upper bounds established by evalu-
ating the source classifier on source validation data.

5.2.2 Experiment 2

The transfer learning scenario that learns how to classify a set of targets from a classifier that is
trained to classify a different set of targets was consider in Ref. 36, in which the authors utilize
one-labeled sample per class to transfer the classification from lung cancer to breast cancer. Two
experiments, i.e., Experiments 2 and 4, are conducted under this scenario. In Experiment 2,
SVHN and DHC datasets are employed. Though images of numerals from zero to nine are
employed in both datasets, from Fig. 7 we see that only 0, 2, and 3 are visually similar and
represent the same numerals. Others are either new to one another, i.e., 1, 4, 5, 7, and 8 in
SVHN, or represent different numerals, i.e., 6 and 9 in SVHN.

Table 4 and Fig. 10 show the numerical and graphical results of the experiment. In this
experiment, ADDA failed; this was expected as the domain shift is more likely to be large and
the adapted target domain will not necessarily match the source domain in terms of class labels.
On the other hand, T-ADDA is very effective with an improved performance from 18% to 80%
over ADDA when N is increased from 1 to 10. However, the improvement of combined cross
entropy and center loss trained source classifier over the cross-entropy trained source classifier is
reduced. It is interesting to note that, when 10 target images per class (<0.6%) are randomly
selected for labeling, the adaptation result from cross entropy trained source classifier reaches
the performance upper bound, and the adaptation result from combined cross entropy and center
loss trained source classifier exceeds the performance upper bound established by applying
source classifier on source validation data. This is indicated by the bold values in Table 4.

The outstanding performance from T-ADDA of SVHN to DHC adaptation that exceeds both
the performance of SVHN to MNIST adaptation shown in Experiment 01 and the intuitive

Fig. 9 t-SNE visualization of the (a) source features obtained from cross-entropy trained source
model; (b) source features obtained from combined cross-entropy and center-loss trained source
model; and (c) target features obtained from combined cross-entropy and center-loss trained
source model.

Table 4 Numerical results of Experiment 2: SVHN to DHC digits adaptation.

N source
model

Source
only 0 (ADDA) 2 4 6 8 10

Cross-entropy 0.142 0.153 ±
0.049

0.651 ±
0.094

0.855 ±
0.016

0.898 ±
0.013

0.915 ±
0.014

0.929 ±
0.008

Center loss 0.142 0.134 ± .029 0.667 ±
0.108

0.863 ±
0.022

0.906 ±
0.013

0.921 ±
0.010

0.939 ±
0.010
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performance upper bounds may be attributed to the lack of diversity of the DHC data within the
same classes as compared with that in the MNIST and SVHN datasets. In other words, we antici-
pate that the DHC features encoded by the SVHN trained source encoder are very well separated
and clustered. This is confirmed by the t-SNE visualization shown in Fig. 11(a). As a compari-
son, Fig. 11(b) shows the t-SNE visualization of features of the SVHN validation dataset.
Clearly, DHC features are better separated than SVHN validation set features, which explains
why the target classifier outperforms the source classifier when they are evaluated against target
and source domain datasets, respectively.

To visualize the adaptation result, Fig. 12 shows the parametric t-SNE37 visualizations of
DHC features (a) before adaptation, (b) after ADDA adaptation, and (c) after T-ADDA adapta-
tion. The parametric t-SNE model was trained by the features of the source training set extracted
by the source encoder as shown in Fig. 12(d), to which the DHC features are adapted. Finally,
it is interesting to get the classification performance for each target class by observing the con-
fusion matrices resulting from the target model before and after T-ADDA. By observing
Fig. 13(a), the confusion matrix resulting from the initial target model has relatively good per-
formance for digits 0, 2, and 3, with classification accuracies of 0.68, 0.6, and 0.47, respectively.
This is consistent with the observation that these three digits share very similar forms. After
adaptation, distributions of all ten target classes are very close to the distributions of the cor-
responding ten source classes as observed from Fig. 13(b) with the lowest classification accuracy
associated with numeral seven in the source domain. In this case, about 60% of numeral seven in
the DHC dataset are correctly classified as numeral seven in the SVHN dataset, and about 20%
are misclassified as numeral one in SVHN dataset.

5.2.3 Experiment 3

In the next two experiments, aerial images are used. In Experiment 3, we consider the transfer
learning scenario from one imaging condition to another. For this scenario, we formed aug-
mented xView and augmented DOTA datasets and performed DA from the former to the latter.

Fig. 10 Graphical result of Experiment 2.

Fig. 11 The t-SNE visualization of target features encoded by source encoders (a) DHC features
encoded by SVHN trained source encoder and (b) features of SVHN validation set encoded by
SVHN trained source encoder.
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The augmented datasets are formed by the following five classes from the xView and DOTA
datasets: Airplane, Large Vehicle, Small Vehicle, Ship, and Storage Tanks, and the following
three classes from the NWPU and RSI-CB datasets: Parking Lot, Runway, and Bridge. Several
example images in selected classes from xView, DOTA, NWPU and RSI-CB are shown in
Fig. 14. Table 5 shows the common settings used in Experiment 3 and Experiment 4. It is worth
noting that, in this case, both the source and target domains have the same eight target classes.
In Table 6, we list all eight classes and the number of images used in each class.

Fig. 12 DHC features visualized by t -SNE (a) before adaptation; (b) after ADDA adaptation; and
(c) after T-ADDA adaptation (N ¼ 10); (d) SVHN features encoded by source encoder.

Fig. 13 Confusion matrix resulting from the target model (a) before and (b) after T-ADDA
(N ¼ 10).
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Fig. 14 Example image used in Experiment 3.

Table 5 Common settings in Experiments 3 and 4.

Datasets Aerial datasets

Base model DenseNet

Input size 224 × 224 × 3

Feature space dimension 256

Epochs for source training 61

Optimizer SGD

Source training learning rate Cross-entropy Center-loss

0.002 0.001

λ N/A 0.05

Discriminator learning rate 0.001

GAN network learning rate 0.0005

FCM network learning rate 0.003

Epochs for adaptation 61
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In this experiment, DenseNet was selected as the base model. After constructing the source
model, we fine-tuned all parameters with the training set of the source data and employed the
trained source encoder as the initial target encoder because the same target classes were involved
in both the source and target domains. The number of labeled target images N is set to be 0, 2, 4,
6, 8, and 10, and for each value of N, we ran the experiment five times and reported the mean ±
standard deviation of the classification accuracies in the target domain. Table 7 and Fig. 15 show
the numerical and graphical results of the experiment. Surprisingly, in this case, ADDA failed to
improve target classification accuracy after adaptation. We believe that this is because the
domain shift is not small enough for successful ADDA adaptation. However, T-ADDA still
shows promising results when N is increased from 2 to 10. Again, the results showed that com-
bined cross entropy and center loss consistently outperformed cross entropy loss by 1.2% to
5.5%. This indicates that a better clustered source domain is beneficial to performing DA via
T-ADDA.

Also notice that in both cases, the performance of T-ADDA when 6 or above target images
(0.6% to 1% of the total target images) are randomly selected for labeling exceeds the upper
bounds established by evaluating the source classifier on source validation data. We conjecture

Table 6 Augmented xView and augmented DOTA datasets.

Class label Augmented xView (source domain) Augmented DOTA (target domain)

C0 xView:Airplane (1000) DOTA:Airplane (1000)

C1 xView:LargeVehicle (3000) DOTA:LargeVehicle (1000)

C2 xView:SmallVehicle (5000) DOTA:SmallVehicle (1000)

C3 xView:Ship (2000) DOTA:Ship (1000)

C4 xView:StorageTanks (1712) DOTA:StorageTanks (1000)

C5 NWPU:ParkingLot (700) RSI-CB:ParkingLot (1000)

C6 NWPU:Runway (700) RSI-CB: Runway (1000)

C7 NWPU:Bridge (700) RSI-CB Bridge(1000)

Table 7 Numerical results of Experiment 3: augmented xView to augmented DOTA adaptation.

N source
Model

Source
only 0 (ADDA) 2 4 6 8 10

Cross-entropy 0.690 0.627 ±
0.021

0.736 ±
0.026

0.807 ±
0.017

0.844 ±
0.018

0.866 ±
0.007

0.886 ±
0.017

Center loss 0.726 0.669 ±
0.020

0.791 ±
0.020

0.840 ±
0.018

0.883 ±
0.004

0.888 ±
0.004

0.906 ±
0.001

Fig. 15 Graphical result of Experiment 3.
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that the reason for this is that target features are better separated and clustered than the source
validation data features. This is confirmed by the t-SNE visualization plots provided in Fig. 16.
To quantify the clustering quality, we applied K-means clustering38 and computed the clustering
accuracies, which are indicated under each t-SNE plot.

5.2.4 Experiment 4

In the last experiment, we again consider the scenario involving different classes of targets in the
source and target domains. The datasets employed were AID and UCM. Ten classes from the
AID dataset and ten classes from UCM dataset were selected for the experiment. Among them,
five classes were common in both the AID and UCM datasets, and five classes were unique to
each dataset.

Table 8 shows the ten source and target domain classes along with the number of images in
each class. Sample images from some of the common classes are shown in Fig. 17, and those
from some of the unique classes are shown in Fig. 18.

For source model training, we first randomly split the source images into training (85%) and
validation (15%) sets. All images in the training set were used for source model training. After
training, the source model was evaluated against the source validation set as well as the entire
target domain images, which were the 10 classes from the UCM dataset, and there were 100
images in each target class. For T-ADDA adaptation, the target encoder was initialized with

Fig. 16 (a) t -SNE visualization of source validation data features encoded by the source encoder
and (b) t -SNE visualization of target features encoded by the source encoder.

Table 8 Source and target classes used in Experiment 4.

Class label AID (source domain) UCM (target domain)

C0 Baseball field (220) Baseball field (100)

C1 Beach (400) Beach (100)

C2 Medium residential (290) Medium residential (100)

C3 Parking lot (390) Parking lot (100)

C4 Sparse residential (300) Sparse residential (100)

C5 Church (240) Airplane (100)

C6 Desert (302) Golf course (100)

C7 Industrial (390) Runway (100)

C8 Mountain (340) Storage tanks (100)

C9 Port (380) Tennis (100)
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Fig. 17 Example images of some common classes in (a) AID and (b) UCM.

Fig. 18 Example images of some unique classes in (a) AID and (b) UCM.
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the ImageNet pretrained DenseNet model with the feature space dimension equals to 256 and
the number of classes set to 10. For each number of labeled target images N ¼ 0;2; : : : ; 10,
we ran the experiment five times and reported the mean ± standard deviation of the classifi-
cation accuracies in the target domain.

The accuracy of the cross entropy trained source classifier on source validation data was
98.4%, and the accuracy of the combined cross entropy and center loss trained source classifier
on source validation data was 98.8%. Intuitively, these two values can be used as the upper

Table 9 Numerical results of Experiment 4: AID to UCM adaptation.

N Source
model

Source
only 0 (ADDA) 2 4 6 8 10

Cross-entropy 0.209 0.203 ±
0.060

0.645 ±
0.077

0.860 ±
0.051

0.903 ±
0.013

0.915 ±
0.007

0.937 ±
0.012

Center loss 0.185 0.148 ±
0.036

0.633 ±
0.088

0.850 ±
0.018

0.924 ±
0.017

0.920 ±
0.008

0.953 ±
0.014

Fig. 19 Graphical result of Experiment 4.

Fig. 20 Confusion matrices for N ¼ 0;2; : : : 10.

Chen et al.: Targeted adversarial discriminative domain adaptation

Journal of Applied Remote Sensing 038504-19 Jul–Sep 2021 • Vol. 15(3)



bounds of the target classifier performance after adaptation. Table 9 and Fig. 19 show the
numerical and graphical results of the experiment. As expected, ADDA failed to improve the
target classification accuracy after adaptation due to different target classes in the source and
target domains. On the other hand, T-ADDA shows promising results even when N is equal
to 2, with the accuracy improving from about 20% to above 60%. However, in this experiment,
the advantage of the combined cross entropy and center loss was not as clear as in other experi-
ments. To see the classification accuracy of each individual class, in Fig. 20, we provide the
confusion matrices for N ¼ 0;2; : : : ; 10. From Fig. 20, no clear difference between the five
common classes and the five classes unique to each domain is observed.

6 Conclusions

The paper describes a robust DA framework, T-ADDA. It is a semi-supervised approach that
provides the required robustness for scenarios in which the initial domain shift is large. Digit
image datasets and real AID were employed to demonstrate the proposed T-ADDA framework.
Three scenarios were tested including transferring knowledge from simulated data to measure
data (SVHN to MNIST), transferring knowledge from one set of targets to another and different
set of targets (SVHN to DHC and AID to UCM), and transferring knowledge from one imaging
condition/sensor to new imaging conditions or sensors (augmented xView to augmented DOTA).
Our experimental results show that T-ADDA is very effective in all three scenarios. When the
available labeled target images are as few as two images per class, T-ADDA increases perfor-
mance over ADDA by at least 8% in the simulated-to-measured scenario, 12% in the sensor-to-
sensor scenario, and over 40% in the target-to-target scenario.
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