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Abstract. We propose an efficient technique for temporally align-
ing video sequences of similar activities. The proposed technique
is able to synchronize view-variance videos from different scenes
performing similar 3-D activities. Unlike existing techniques that just
consider unidirectional alignment, the proposed technique considers
symmetric temporal alignment and computes the optimal alignment
by eliminating any view-based bias. The advantages of our technique
are validated by experiments conducted on synthetic and real video
data. The experimental results show that the proposed technique
out-performs existing techniques in several test video sequences.
© 2010 SPIE and IS&T. [DOI: 10.1117/1.3488415]

1 Introduction
Temporal alignment of video sequences is important in appli-
cations such as superresolution imaging,1 robust multiview
surveillance,2 and mosaicking. In some applications, it is
required to align video sequences from two similar scenes,
where analogous motions have different trajectories through
the video sequence. Figure 1 illustrates two similar motions
occurring in related 3-D planar scenes with respect to time.
Camera 1 views 3-D scene X (X1, Y1, Z1, t1) in view 1(ν1)
and acquires video I1(x1, y1, t1). Camera 2 views another
3-D sceneX (X2, Y2, Z2, t1)in view 2 (ν2) and acquires video
I2(x2, y2, t2). Note that the motions in these two scenes are
similar but have dynamic time shift. The homography ma-
trix H is typically used to represent the spatial relationship
between these two views.

A typical schematic for temporal alignment is shown in
Fig. 2. Note that for the sake of correlating two videos
and representing the motions, features are extracted and
tracked separately in each video. Robust view-invariance
tracker methods are used to generate feature trajecto-
ries F1(x1, y1, t1) and F2(x2, y2, t2) from video I1 and I2,
respectively.

Existing techniques vary on how to compute the tempo-
ral alignments. Giese and Poggio3 computed the temporal
alignment of activities of different people using dynamic
time warping (DTW) between the feature trajectories, but
limited their technique to a fixed viewpoint. Rao et al.4 used
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a rank-constraint-based technique (RCB) in DTW to cal-
culate the synchronization. Such techniques only consider
unidirectional alignment,3, 4 i.e., they project the trajectory
from one scene to the other, which designates one view as
the reference for computing the temporal alignment. Such
techniques introduce the bias toward the reference trajectory,
i.e., due to the noise and imperfection of the obtained ref-
erence trajectory, such a technique will produce erroneous
alignment. Therefore, for the sake of minimizing the bias,
one should consider computing the alignment in a symmet-
ric way. Singh et al.5 formulated a symmetric transfer error
(STE) as a functional of regularized temporal warp. The tech-
nique determines the time warp that has the smallest STE. It
then chooses one of the symmetric warps as the final tem-
poral alignment. The STE technique provides better results
than unidirectional alignment schemes. The accuracy of the
temporal alignment can be improved further, since the STE
technique does not really eliminate the reference-view bias
between two sequences.

In this work, we propose an unbiased bidirectional dy-
namic time warping (UBDTW) technique that can remove
biasing and provide more accurate results.

2 Proposed Technique
The schematic of the proposed temporal alignment technique
is shown in Fig. 3. The technique consists of three steps which
are explained in the following sections.

2.1 Bidirectional Projections
Since feature trajectories represent the activities in the video
sequences, we compute the projections of the feature trajec-
tories F1 from scene 1 to 2 and F2 from scene 2 to 1 using
Eq. (1) as follows:

F p
2 (x ′

1, y′
1, t1) = H1→2 · F1(x1, y1, t1),

F p
1 (x ′

2, y′
2, t2) = H2→1 · F2(x2, y2, t2), (1)

where H1→2 and H2→1 are the homographies from scene 1
to 2 and scene 2 to 1, respectively. Homographies are in-
dependent of the scene structure and can be computed

Fig. 1 Illustration of two distinct scenes acquired using two distinct
cameras.
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Fig. 2 A typical schematic of existing techniques.

from X (x1, y1, z1, t1) ∩ X (x2, y2, z2, t2) using the direct lin-
ear transform (DLT) algorithm.6

2.2 Computation of Symmetric Warps
Once we obtain two pairs of feature trajectories, (F1,F p

2 )
and (F p

1 ,F2), we compute the symmetric warps W1,2p and
W1p,2 using regularized DTW. We construct the warp W as
follows:

W = w1, w2, . . . , w L max(L1,L2) ≤ L < L1 + L2, (2)

where L1 and L2 are the length of trajectories F1 and F2,
respectively. The L’th element of the warp W is w L = (i, j),
where i and j are the time indices of F1 and F2, respectively.
The optimal warp is the minimum distance warp, where the
distance of a warp is defined as follows:

dist(W) =
L∑

k=1

dist[F(ik),F p( jk)], (3)

where dist[F(ik),F p( jk)] is the distance between the two
values of the given time indices (i, j) in the k’th element of
the warp. We propose a regularized distance metric function
as follows:

dist[F(i),F p( j)] = ||F(i) − F p( j)||2 + w reg, (4)

reg = ||∂F(i) − ∂F p( j)||2 + ||∂2F(i) − ∂2F p( j)||2, (5)

where ∂F and ∂2F are the first and second derivatives of
F . The regularization term can be considered a smoothness
penalty, where w is the weight (normally, w = 25).

To find the optimal warp, an accumulated distance ma-
trix is created. The value of the element in the accumulated
distance matrix is:

D(i, j) = dist[F(i),F p( j)] + min(φ), (6)

φ = [D(i − 1, j),D(i − 1, j − 1),D(i, j − 1)]. (7)

A greedy search technique is employed to find the opti-
mal warp W , such that dist(W) is minimum. We can now
obtain the symmetric warps W1,2p and W1p,2 for (F1,F p

2 )
and (F p

1 ,F2), respectively.

2.3 Optimal Warp Calculation
Note that we calculated symmetric warps W1,2p and W1p,2,
and corresponding distance matrixes D1,2p and D1p,2 in
the last step. However, the warps still have bias (W1,2p bi-
ased toward F1 while W1p,2 is biased toward F2). To min-
imize the effect of biasing on alignment, we first combine

Fig. 3 The schematic of UBDTW.

Fig. 4 An intuitive illustration of the UBDTW.

D1,2p and D1p,2 to make a new distance matrix Dc as
follows:

Dc = D1,2p + D1p,2. (8)

Once Dc is obtained, global constraint based on W1,2p
and W1p,2 is added into this matrix. Denote Wc as the warps
under the global constraint, which is restricted by the sym-
metric warps, as follows:

min(W1,2,W2,1) ≤ Wc ≤ max(W1,2,W2,1). (9)

Finally, warp Wc, which satisfies the following equation,
is chosen as the final warp.

Wcopt = argWc
min[dist(Wc)]. (10)

Figure 4 shows an intuitive explanation for the proposed
optimal warp calculation. The grid represents the distance
matrix Dc. The horizontal and vertical axes represent the
index of trajectories F2 and F1, respectively. The two bold
lines represent the symmetric warps W1,2p and W1p,2. The
gray area represents the search area constrained by W1,2p
and W1p,2. The warp Wcopt inside the global constraint is
considered as the final unbiased warp.

3 Experiments and Comparative Analysis
We evaluated our technique using both synthetic and real
videos and compared it with RCB4 and STE techniques.5

3.1 Synthetic Data Evaluation
In the synthetic data evaluation, we generate planar trajec-
tories 100 frames long using a pseudorandom number gen-
erator. These trajectories are then projected onto two im-
age planes using user-defined camera projection matrices.
A 60-frames-long time warp is then applied to a section of
one of the trajectory projections. The temporal alignment
techniques are then applied to the synthetic trajectories. The
test was repeated on 100 different synthetic trajectories and
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Table 1 Performance improvement of the proposed technique over
existing techniques

Origin RCB STE Proposed

DynDate 25.50 7.33(71.25%) 3.11(87.80%) 1.98(92.24%)

SynData
with noise

25.50 17.18(32.63%) 3.45(86.47%) 2.97(88.35%)

100 similar trajectories with noise added. The added noise
was a normally distributed random variate, with zero mean
and variance σ 2 = 0.1. The mean absolute error between the
warp obtained by different techniques and the ground truth
is computed as the evaluation metric. The results are shown
in Table 1. The percentage in the parentheses represents the
improvement obtained by an alignment technique with re-
spect to the original error. Figure 5 shows a synchronization
result with a synthetic trajectory. The performance of the
RCB, STE and the proposed techniques are compared. It
is clear that the proposed technique outperformed the other
techniques.

3.2 Real Data Evaluation
For the real video test, we use two videos (54 frames and
81 frames long, respectively) capturing the activity of lifting
a coffee cup by different people. We tracked the coffee cup

Fig. 5 (a) Synthetic trajectory; (b) result of temporal alignment for
synthetic trajectories using RCB, STE and the proposed technique.

Fig. 6 Comparisons of temporal alignment results on real data using
STE technique (shown in the first and second rows) and the proposed
technique (shown in the third and fourth rows).

that can represent the activity in a video to generate feature
trajectories. Since ground-truth information is not available,
we used visual judgement to assess whether the alignment
was correct or not.

Figure 6 shows some representative aligned frames in the
4th, 8th, and 12th elements of the alignment warp computed
using the STE and the proposed technique. Note that if the
coffee cup is at the same position in two frames, we marked
it as “matched,” otherwise, “mismatched.” In the results ob-
tained using the STE technique, only one pair of frames
is matched, indicating that such technique can often result
in erroneous alignments. The performance of the proposed
technique is shown in the last two rows. It is observed that
all the alignments are correct.

4 Conclusions
An efficient technique is proposed to synchronize video se-
quences captured from planar scenes and related by varying
temporal offsets. The proposed UBDTW technique is able to
remove the biasing and lead to accurate temporal alignment.
In the future, we would like to extend this work to more
general scenes.
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