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Abstract. This study presents the application of multivariate analyses
to analyze micro-Raman spectral imaging data in reference to the
adhesive/dentin interface as well as comparison with univariate analy-
sis. The univariate statistical methods, such as mapping of specific
functional group peak intensities, do not always detect functional
group positions and quantities due to peak overlapping. A compre-
hensive chemical analysis of the adhesive/dentin interface, along with
the multivariate statistical methods, principal component analysis,
and fuzzy c-means clustering, is studied. Compared to univariate
analysis, multivariate methods present the entire hyperspectral infor-
mation from the specimen in a concise and uncorrelated way. Apart
from the ease with which information can be extracted and presented,
multivariate methods also highlight minute and often important varia-
tions in the spectra that are difficult to observe using univariate meth-
ods. The results show for the first time the clear chemical and struc-
tural classifications in the adhesive/dentin interface at successively
greater resolutions. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

olymethacrylate-based dental composites have received
idespread clinical acceptance as alternative restorative ma-

erials to dental amalgams. The popularity of the composite
aterials is attributed primarily to their esthetic appearance

nd the lack of mercury release. However, composites have a
ailure rate of about 2 to 3 times that of traditional
malgams.1–3 The failures in composite restorations are com-
only found at the adhesive/dentin interface.4 Composite res-

oration procedures include enamel and dentin preparation us-
ng rotary instruments, acid etching, application of adhesives
nd methacrylate-based dental composites, and light curing
rocesses of the adhesives and composites. Dentin contains
0% mineral, 30% collagen, and 20% water by volume.5 Fol-
owing acid etching, the mineral phase in dentin is removed
rom a zone that measures up to �10 um of the bonding
urface. Removal of the mineral phase literally suspends col-
agen fibers in water. On drying, the exposed collagen fibers
ill collapse, which reduces the space among fibers and in-
ibits adhesive resin penetration. Hence, a wet bonding tech-
ique has been used to achieve interfacial bonding between
dhesive and dentin.6 Characterization and imaging of the
hemical structure of the several-micron-thick adhesive/
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dentin interface of the tooth has thus been an area of great
interest.7

Researchers have successfully applied micro-Raman imag-
ing spectroscopy toward the characterization of the chemical
structure and composition of adhesive resins, collagen, and
minerals, as well as to the adhesive-dentin interface.8–11 Using
micro-Raman spectroscopy, the degree of adhesive polymer-
ization, the extent of dentin demineralization, and the amount
of adhesive penetration at the adhesive/dentin interface could
be measured. 2-D Raman mapping/imaging of the specimen
enables us to obtain spectra at points on the specimen sepa-
rated by 1 �m. Thus the data consists of three dimensions—
the x and y coordinates at every pixel, and the intensity value
at each Raman shift of the spectrum at that pixel. The data
thus obtained are known as hyperspectral data, in view of
their large size in each dimension. Analysis of this hyperspec-
tral data is necessary to give a spatial distribution of the
chemical makeup of the specimen. Therefore, analysts employ
different techniques like univariate and multivariate analyses
to filter, understand, and interpret the data. Previous micro-
Raman studies on the adhesive/dentin interfaces have used
univariate methods of analysis to arrive at the spatial relation-
ships and distributions of the desired functional groups in the
specimen.11,12

Univariate methods consider one wave number of the Ra-
man shift at a time, thereby providing information about the
1083-3668/2008/13�1�/014020/9/$25.00 © 2008 SPIE
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haracteristic functional group corresponding to the wave
umber/peak concerned. Wave numbers corresponding to the
dhesive monomer, collagen, and mineral have been used to
haracterize the distribution of these components in the
nterface.11 However, univariate methods, while presenting
he information at a particular functional group, do not repre-
ent chemical components in the system as a whole. Further,
t becomes very difficult to keep track of minor changes in
pectra across the specimen. These subtle spectral differences
ay be the key to the chemical differentiation of areas such as

arious and caries-affected regions.
Multivariate analysis techniques serve to analyze the hy-

erspectral data by treating each spectrum �pixel� as a whole,
ather than considering individual peaks in each spectrum.
arious methods of multivariate analysis like principal com-
onent analysis �PCA�,13–15 and clustering—k-means and
uzzy c-means16,17—have been established by researchers for
nalyzing 2-D data. Techniques like PCA bring out the corre-
ation between individual pixels, while clustering techniques
erve to separate out the specimen pixels into regions based
n likeness of their spectra. Also, PCA helps us reduce the
ize of our data from a broad range of wave numbers to a few
cores, each of which describes a principal component spec-
rum. Often, as few as four to five principal components serve
o bring out the major variations in the data, as opposed to a
ange of Raman shift values numbering in the hundreds. This
imensional reduction of the data not only helps us to imme-
iately recognize the number of components but also remove
oise, which would be difficult using univariate analysis
lone, unless clear a-priori information about the nature of the
pecimen is present. Clustering techniques give us the option
f being able to divide the specimen into chemically different
egions in successively increasing detail. Fuzzy c-means clus-
ering has been used for its ability to display overlap of dif-
erent clusters representing various chemical constituents at a
ingle region. In this study, the fuzzy c-means clustering al-
orithm uses the scores given by PCA as the basis data. The
se of the PCA results as an input to the cluster analysis
ould provide chemical and structural classifications at suc-

essively greater cluster resolutions, as described later.
Multivariate algorithms have been used for various medi-

al diagnostics.17–20 Although molecular structural informa-
ion is repressed, the capability to reveal structurally and
hemically altered regions in a heterogeneous specimen is en-
anced. Bonding adhesive to dentin relies on the extraction of
ineral phase and infiltration of adhesive into the voids left

y the mineral. Since acid etching of dentin will produce a
ery complex matrix with variable composition and the pres-
nce of water, which could be detrimental for adhesive pen-
tration and polymerization, it is expected that the adhesive/
entin interface, is both chemically and structurally
eterogeneous. The purpose of this study was to apply
nivariate and multivariate spectral analyses in micro-Raman
maging to reveal structural/chemical features of the adhesive/
entin interface, and to demonstrate the importance of multi-

ariate imaging analysis in heterogeneous interface studies.

ournal of Biomedical Optics 014020-
2 Materials and Methods
2.1 Adhesive/Dentin Interface Specimen Preparation
Specimen preparation was done at the University of Missouri,
Kansas City �UMKC�, School of Dentistry. Six extracted hu-
man molars were collected at the Oral Surgery Clinic at
UMKC. Based on a protocol approved by the UMKC adult
health sciences institutional review board, the teeth were col-
lected after the patient’s informed consent. The teeth were
then stored in separate vials containing 0.9% normal saline
and 0.002% sodium azide and stored at 4°C. The specimen
preparation has been described in greater detail in some ear-
lier publications.11,12,21

First, dentin disks were formed by cutting off the roots at
the cementum enamel junction by using a water-cooled low-
speed diamond saw obtained from Buehler Limited �Lake
Bluff, Illinois�. The occlusal one-third of the crown was sec-
tioned perpendicular to the long axis of the tooth. Using 600-
grit silicon carbide under water, a uniform smear layer was
created on these fractions. The dentin was then etched with
35% phosphoric acid for 15 s. Single bond �SB� adhesive was
applied to the etched dentin according to the manufacturer’s
instructions and polymerized for 30 s using a visible light
source �Spectrum Light, Dentsply, Milford, Delaware�. The
“wet bonding” technique was used throughout the bonding
procedure.6,22 The specimens were stored for a minimum of
24 h in water at 25°C before further sectioning. The treated
dentin surfaces were sectioned perpendicular and parallel to
the surface using a water-cooled low-speed diamond saw. The
final dimension of the slab was 10 mm long, 2 mm thick, and
1.5 mm wide.

2.2 Data Acquisition
The Jasco NRS 2000 micro-Raman spectrometer �Jasco Incor-
porated, Easton, �Maryland� used an argon ion laser beam
�514.5 nm� focused through an 60� Olympus Plan Neofluor
water-immersion objective �numerical aperture �NA� 1.2� to a
�1.5-�m beam diameter. Raman back-scattered light was
collected through the objective and resolved with a mono-
chromator. The spectra were recorded with a software-
controlled charge-coupled device �CCD� array. The CCD ar-
ray goes from left to right across a row of the specimen and
the same way in the next row. Laser power was approximately
3 mW. An imaging system and high-resolution monitor were
used to visually identify the points at which the Raman spec-
tra are collected. The Raman shift was calibrated using the
known peaks of silicon and neon.

The adhesive/dentin specimen was placed at the focus of a
60� water immersion objective and covered with distilled
water in preparation for micro-Raman spectroscopic analysis.
Spectra were acquired at positions corresponding to 1-�m
intervals across the adhesive/dentin interface using the com-
puter controlled x-y-z stage with minimum step width of
50 nm. Spectra were obtained at a spectral resolution of
�6 cm−1 over the spectral region of 875 to 1785 cm−1 and
with an integration time of 60 s.

2.3 Data Preprocessing
The Raman spectra collected are often contaminated with

various interfering signals. The sources of interference in-
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lude fluorescence and stretching of spectral intensity ampli-
udes. The amplitude stretching could be due to specimen in-
lination, variation in specimen thickness, and absolute
ntensity of light. To eliminate interfering signals and bring
he spectra to a common platform of comparison, certain pre-
rocessing operations are performed. Data preprocessing was
arried out by use of procedures written in the laboratory, in
atLab �The Mathworks, Natick, �Massachusetts�. As in ref-

renced literature,23 a baseline correction is used to get rid of
he fluorescence spectra. A third-degree polynomial baseline
t has been subtracted out of each spectrum for this purpose.

To correct fluctuations in the intensity amplitudes, signal
ormalization is performed using a standard normal variate
SNV� at every pixel in the specimen. This is a standard pre-
rocessing technique used in earlier literature.23 The SNV is
iven as

SNVj =
�Xij − X̄j�

��
i=1

n

�Xij − X̄j�2

n − 1
�

1/2 , �1�

here SNVj is the standard normal variate of the spectrum at
he j’th pixel. Xij is the spectral intensity at the i’th Raman

hift of the spectrum at the jth pixel. X̄j is the average spectral
ntensity at the chosen pixel, and n is the number of wave
umbers in the Raman shift range.

The disadvantage of the SNV is that if the intensity ampli-
ude fluctuations are due to real concentration differences,
hese concentration differences will be masked, thus limiting
uantitative analysis. This admission does not detract from the
esults of this study, since chemical and structural classifica-
ion, not quantification, is attempted. After data normalization,
e applied the PCA to extract significant features and then
se fuzzy c-means clustering to identify chemically important
onstitutes. There are multi-variant statistical approaches,
hich are well suited for hyperspectral data analysis.

.4 Principal Component Analysis
CA is a widely used statistical technique to compress and
enoise large datasets.13 The principal components represent
he best set of axes that can be used to view the data. The data
re uncorrelated in the new set of axes as opposed to the old
ne. This shows an important characteristic of the principal
omponents in that they form a basis for the data. Therefore,
t is easy to make out patterns in the data. Further, the princi-
al components of the data are arranged in decreasing order of
heir contribution to the variance. Hence, we can select those
omponents that contribute the most to the variance. There are
everal algorithms to perform principal component analysis.
he algorithm using the noniterative partial least squares

NIPALS� algorithm has been used in the current study, as it
erforms only the required number of principal components
esired. The NIPALS algorithm gives the scores and principal
omponents �PCs� out of the 2-D dataset X. The NIPALS
lgorithm is based on the fact that the dataset X can be ex-
ressed in terms of linearly independent components.

A random vector t from X is chosen as the initial assump-

ion for the first �most important in terms of contribution to

ournal of Biomedical Optics 014020-
variance� principal component. The corresponding score is
calculated based on the principle that it is the projection of t
on X, or the vector of covariances of t with the other spectra
using Eq. �2�.

pold� =
t�X

t�t
. �2�

Then the score is normalized according to Eq. �3�.

p� =
pold�

	pold� 	
. �3�

The principal component, which is the projection of the scores
on X corresponding to this score, is then calculated as follows.

tnew� =
Xp

p�p
. �4�

If the difference between tnew and t is less than a tolerance
value, the calculation is terminated or else t is set to be equal
to tnew. When the direction of t is in the direction of maximum
variance, this loop converges. In other words, p is now the
first �most important in terms of contribution to variance� ei-
genvector.

After obtaining the first principal component t and the cor-
responding set of scores p, tp� is now the contribution of
principal component 1 to the data and is subtracted from the
data.

E = X − tp�. �5�

The algorithm described is now applied on the remnant E of
the dataset X. Proceeding in this way, the other principal com-
ponents �PCs� t are extracted until they start appearing to be
noise. The scores p represent the contribution of each princi-
pal component to each vector of X. Since the PCs form a basis
for the data, the scores represent the data contained in each
vector of X. Henceforth, the set of the principal components
are represented as T and the set of score by P.

The 2-D matrix X considered in this study is the matrix
consisting of the vector spectra. Therefore the PCs t represent
“spectra.” The principal components are not true spectra,
since they also contain negative intensities. They are linear
combinations of true spectra and as such are not expected to
be similar to the pure component spectra.13 Since the principal
component spectra now form the basis spectra for the data,
the scores of these principal components represent the data.
Hence, these scores can be used in future calculations in place
of the data. The PCs can be scrutinized based on the equiva-
lence to the pure component spectra. If they are equivalent,
then the correlated scores can be represented as 2-D images,
which usually correlate to chemical images.

To determine whether the principal component obtained is
noise or represents minute variation within the spectral data, a
simple visual evaluation of the variation among the PCs24 is
performed. There should be a distinct difference between the
PCs that associate with signal as opposed to those associating
with noise. Usually, the number of principal components is

much smaller than the number of spectra in the data. In this

January/February 2008 � Vol. 13�1�3
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ork, the number of principal components to be used to de-
cribe the data was decided by looking at the plots of the first
ew components.

.5 Fuzzy C-Means Clustering
luster analysis is an unsupervised statistical method of
rouping the data, without a priori knowledge of its nature,
urely based on its mathematical attributes. It is a particularly
seful technique to characterize hyperspectral data. Moreover,
t has been applied quite often in the analysis of medical
ata.25 There are many types of clustering algorithms avail-
ble in the literature like k-means, fuzzy c-means, hierarchi-
al, etc. Fuzzy c-means clustering was chosen over k-means
ecause of its capability to assign pixels to different clusters.

The hyperspectral data in our case are the set of scores p
aken at each pixel. Initially, the membership function U is
nitialized as random numbers.

U = �uij� . �6�

ere, uij is a membership value of the i’th cluster at the j’th
ixel. Using this initial assumption of the membership func-
ions, the centroids of the clusters are calculated as

ciq =

�
j=1

M

uij
mpq

�
j=1

M

uij
m

, �7�

here i represents the cluster number; q specifies the score
umber in the centroid; and M is the number of pixels. Also,
� �1, � � is a fuzziness index. The value of m has been

aken as 2 in this work.
Using the centroids obtained, the new set of membership

unctions is calculated as

uij =
1

�
k=1

NC 
 dij

dkj
�2/�m−1�

, �8�

here dij is the distance of the pixel j from the cluster i, k is
he cluster number, and NC is the number of clusters chosen.

Using this new set of distance values and the centroids
alculated from the earlier set of membership functions, the
issimilarity function between the old set of membership
unctions and the new set of centroids is calculated as

J = �
i=1

NC

�
j=1

M

uij
mdij

2 . �9�

he new set of membership functions is now input in Eq. �7�
o calculate the new set of centroids. This process is continued
ntil the dissimilarity function J converges to within a set
olerance.

The membership functions uij here describe the contribu-
ions of each centroid score set ciq to a particular pixel j. Each
entroid score set can be converted into the corresponding

entroid spectrum using Eq. �10�.

ournal of Biomedical Optics 014020-
Ci = �
q=1

S

tqcqi. �10�

The specimen is divided into regions based on the centroid
score set c. The centroid spectra C can be used to interpret the
regions chemically. Using the membership functions, a
pseudo color image is produced according to the following
procedure. Every cluster i is represented by a particular color
Ci that is picked from a spectrum ranging from blue to red.
The graph used for picking the colors is shown in Fig. 1.
However, it is noted that in the algorithm, the cluster numbers
are assigned randomly; the assignment of colors to clusters is
not always in the same manner each time a run is performed.
The distribution of the membership function across the speci-
men is shown in the form of pseudo color images that are
developed according the rule:

Cj = �
i=1

NC

Ciuij , �11�

where Cj is the color of the pixel j, and Ci is the color used to
represent the cluster i.

3 Results and Discussion
3.1 Univariate Analysis
Univariate analysis results are presented first so that they can
be compared and contrasted with the multivariate analysis.
There are three major components in this specimen: adhesive,
dentin, and the adhesive/dentin interface. The representative
spectra of these three components are extracted from the
specimen and shown in Fig. 2. The SB adhesive is a bonding
agent containing both hydrophilic hydroxylethyl methacrylate
�HEMA� and hydrophobic bisphenol A diglycidyl methacry-
late �BisGMA� components.11 The intense peaks related to the
SB adhesive occur at 1720 cm−1 �carbonyl�, 1609 cm−1 �phe-
nyl CvC�, 1453 cm−1 �CH2 def�, and 1113 cm−1 �C-O-C�.
These peaks are related to methacrylate monomers in the
bonding agent. Particularly, the peaks at 1609 and 1113 cm−1

are related to the BisGMA monomer. In the dentin spectrum,
the peaks related to collagen occur at 1667 cm−1 �amide 1�,
and 1245 cm−1 �amide 3�; the peak related to mineral occurs
at 961 cm−1 �P-O�. The spectrum of the interface shows the
contribution from the adhesive and dentin �Fig. 2�c��, indicat-
ing adhesive has penetrated into the partially demineralized

Fig. 1 The color graph ranging from 0 to 255. �Color online only.�
dentin layer.

January/February 2008 � Vol. 13�1�4
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The simplest approach of micro-Raman spectral data
nalysis is the display of specific functional group intensities
elated to the chemical components of the specimen as a func-
ion of position. The univariate intensity maps of the Raman
hift values of 961, 1113, 1453, and 1667 cm−1, respectively,

ig. 2 Three fundamental spectra present in the specimen, that of the
a� interface, �b� dentin, and �c� adhesive, in that order.

ig. 3 The pseudo color representations of the distributions of �a� pho

pecimen. �Color online only.�

ournal of Biomedical Optics 014020-
are shown in Fig. 3 �the related light image of the adhesive/
dentin interface can be seen in Ref. 11�. The intensities at
these positions are used to display the distributions of the
phosphate mineral, BisGMA monomer, SB adhesive �both
BisGMA and HEMA�, and collagen as a function of position
across the adhesive/dentin interface. Black represents the low-
est intensity, while red represents the highest. By comparing
the spectra shown in Fig. 2, it can be seen that the peaks at
961 and 1113 cm−1 do not overlap with other peaks, and that
they can be considered to be “unique” peaks for chemical
mapping of mineral phosphate and BisGMA. The univariate
images based on these two parameters provide reliable infor-
mation on the spatial distribution of the mineral and BisGMA
monomer. However, it is noted that the CH2 peak
�1453 cm−1� of the adhesive overlaps with the CH2 peak of
the collagen. Hence, the univariate image does not give an
accurate picture of the description of either adhesive or col-
lagen without spectral subtraction. By the same reasoning, it
is observed that Fig. 3�b� shows high intensity of CH2 in the
interface region due to the summing up of the peaks of adhe-
sive as well as collagen. Also, the amide 1 region more or less
overlaps the carbonyl and CvC region of the adhesive.
Therefore, these images too cannot be used directly for com-
position interpretation. In summary, the univariate imaging
approach does not always precisely identify functional group
distribution due to interference from neighboring peaks.

3.2 Principal Component Analysis
To evaluate the number of components that can be detected in
the mapped spectra data, PCA was applied. The first six prin-
cipal components from the PCA on the Raman data X are

mineral, �b� adhesive, �c� BisGMA monomer, and �d� amide 1 in the
sphate
January/February 2008 � Vol. 13�1�5
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hown in Fig. 4. It is shown that the first three or four com-
onents are the ones that contribute to the part of the spectrum
omprising the dentin and/or adhesive. The other principal
omponents could either represent minor changes in the
hemical structure or could indicate cosmic or other noise.
ince it is difficult to ascertain whether a component repre-
ents noise or chemical structure change, different numbers of
omponents are tested for results. An important point to be
oted is that principal components can sometimes have nega-
ive values for their intensities. It is observed that they some-
imes are combinations of positive and negative spectra.
ence, the components have to be considered with both the
ositive and negative signs. As described previously, the
cores of these principal components can be used as the basis
or the Raman data rather than the intensities at different Ra-
an shift values.
The score of the first principal component shown in Fig.

�a� represents the partially demineralized dentin in the speci-

ig. 4 Principal components of Raman spectral data in decreasing
rder of their contribution to the variance.
Fig. 5 The scores of the six principal compon

ournal of Biomedical Optics 014020-
men. The partially demineralized dentin is visible in the re-
gion from about 10 to 15 �m in the x direction. The regions
from about 5 to 10 �m in the x direction represent the dem-
ineralization of dentin in the specimen resulting from acid
etching. The region beyond 15 �m represents dentin that is
still in the mineralized form. Earlier work7 used the ratio of
961 /1454 cm−1 to arrive at the distribution of demineraliza-
tion. However, the subtraction process necessitates the sub-
traction of the CH2 from the adhesive before taking the ratio.
Also, principal component analysis shows us that there are
two components, namely, partially demineralized dentin and
mineralized dentin. This separation of components is difficult
to obtain by univariate methods.

Figure 5�b� represents the score of the second principal
component, which shows the complementary relationship be-
tween the adhesive and the mineral distribution. It represents
adhesive in a negative sense and mineral in a positive one.
The mineral distribution is seen to correspond closely with
that obtained from the univariate imaging shown in Fig. 3�a�.
We note that the adhesive infiltrates those regions of the in-
terface that are void of mineral. Looking at score 2 in a nega-
tive sense helps us to note the decrease in concentration of the
adhesive as it penetrates into the demineralized dentin. This
result is consistent with that obtained using univariate peak
ratio methods.11,21 It is noted that the adhesive distribution as
determined by the earlier methods required the subtraction of
the CH2 peak of the collagen from the CH2 peak of the
adhesive.11,21

As shown in Fig. 5�c�, score 3 describes the distribution of
the collagen in the interface region. This distribution is diffi-
cult to obtain by univariate methods, because the amide 1 and
3 peaks of collagen overlap the vibrational peaks of the
adhesive.26 The thickness of the demineralized layer as well
the extent of penetration of the adhesive is critical to the ef-
fectiveness of the bond between the dentin and adhesive.
These characteristics, i.e., depth of dentin demineralization
and adhesive infiltration, are directly obtained, noise free from
the principal component analysis results, as they are indepen-
ents used in describing the specimen.

January/February 2008 � Vol. 13�1�6
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ent spectral results. It is thus seen that principal component
cores extract the spectral information in independent sets in
ecreasing order of their importance. The latter components
re perceived to be either the minor changes in the chemical
tructure or noise, and their scores are therefore not consid-
red here in extracting information. Other methods such as
lustering will be considered for further detailed analysis.

The spectral components detected from the PC analysis are
ot spectra of pure components but rather linear combinations
f pure spectra. The scores of the PCA represent the distribu-
ion of linearly independent components that are either
omplementary or supplementary linear combinations of pure
omponents. Hence, rather than the set of Raman shift values,

Fig. 6 The clustered images show the divisio
he principal components can be used as the set of basis vec-

ournal of Biomedical Optics 014020-
tors to represent the hyperspectral dataset. Correspondingly,
the scores of these principal components are their contribu-
tions at every pixel and can be used in place of intensity
values in fuzzy c-means clustering analysis.

3.3 Fuzzy C-Means Clustering
Cluster analysis separates the group of spectra into clusters
with clear similarities within each cluster and distinctions be-
tween the clusters. Figure 6�a� shows the first image where
the data has been split into three clusters. The regions are
identified by observation of the cluster centroid spectra shown
in the same figure. This is a low level of resolving the data,

e specimen into chemically distinct regions.
where it can be seen that the specimen is divided into three

January/February 2008 � Vol. 13�1�7
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ajor components: the adhesive, the interface, and the dentin.
ifferent regions have different spectra clusters. The deminer-

lized collagen matrix region is obtained directly without hav-
ng to subtract out the CH2 peak of the adhesive. From the
omparison of the interface spectrum with the adhesive spec-
rum �shown in Fig. 6�a��, the BisGMA monomer concentra-
ion is readily observed to be lesser in the interface region as
ompared to the other SB adhesive components �mostly
EMA� concentration.

To observe further detail in the specimen, the number of
lusters is increased successively and the details are shown in
ig. 6�b�. In addition to the details observed in three clusters,
separate region where there is more mineral concentration

nd correspondingly, a lesser concentration of adhesive pen-
tration, can be seen. This can be observed from the compari-
on of the spectra of the two new clusters obtained �Fig. 6�b��.
he new cluster region can be correlated with score 1 in Fig.
�a�, where the region with higher mineral concentration cor-
esponds closely with the cluster that has a lesser concentra-
ion of the adhesive. Also, it is observed that adhesive pen-
tration is not consistent with dentin demineralization.
omparison of Fig. 6�c� to the partially demineralized zone
bserved in score 2 �Fig. 5�b�� shows that the partially dem-
neralized zone to the right of the interface beyond 12 �m
hows almost no adhesive infiltration.

From Fig. 6�c�, in addition to the earlier clusters formed,
he adhesive can be seen to be split into two regions in which
he lower region has a slightly lesser concentration. The cen-
roid of the new cluster is observed to have a slightly lower
isGMA content compared to the entire adhesive cluster. Us-

ng the clustering method, the chemically and structurally al-
ered regions in the adhesive layer are clearly seen. The alter-
tions are almost impossible to see using univariate methods.
his information is very important for understanding the qual-

ty and durability of the adhesive/dentin interface.
From Fig. 6�d�, in addition to the information obtained

rom five clusters, we can now see still greater detail in the
nterface region. The new cluster formed indicates the pen-
tration of the adhesive through the interface. This cluster is
bserved to be particularly rich in BisGMA monomer, com-
ared to the hybrid layer. The BisGMA monomer has there-
ore not penetrated very well into the interface, but has spread
round it. These results match the univariate image shown in
ig. 3�c�. These results agree well with the previous results.11

he new cluster centroid also indicates the presence of layers
ith lesser concentration of adhesive that has penetrated

hrough the demineralized dentin matrix.
Further clustering results in the formation of duplicate

lusters, and inclusion of more principal components is not
ound to produce significant changes in the clusters. Hence,
he number of clusters as well as factors is fixed at six. A

inimum number of clusters divide the specimen into regions
f different chemical makeup, while further clusters tend to
eveal differences in the concentrations of the chemical con-
tituents present within basic clusters.

In this study, both univariate and multivariate methods
ere used to extract information from 2-D Raman imaging
ata. Univariate methods bring out the distribution of func-
ional groups that are taken to represent particular constituents
n the specimen. For example, to study mineral distribution,

−1
dhesive resins, BisGMA monomer, and collagen, 961 cm

ournal of Biomedical Optics 014020-
�P-O�, 1453 cm−1 �CH2�, 1113 cm−1 �C-O-C�, and
1667 cm−1 �amide� are used, respectively. However, the
peaks represented by these groups sometimes overlap and are
sometimes inadequate to separate out chemically different re-
gions. Apart from this, it is difficult to separate out regions at
successively greater resolutions. For example, it becomes dif-
ficult to separate out the zone of partially demineralized den-
tin from fully demineralized dentin.

These results can be obtained without such a-priori knowl-
edge and spectral manipulation by using multivariate meth-
ods, namely, PCA and fuzzy c-means clustering as demon-
strated in this work. From the score images of the principal
components, the distributions of partially demineralized den-
tin, adhesive, and mineral distribution, as well as collagen
fiber arrangement, were observed. The fuzzy c-means clus-
tered images of the specimen indicated results like the un-
equal distribution of the two monomers—HEMA and
BisGMA—and the mismatch between the extent of deminer-
alization and adhesive penetration. While five clusters showed
the penetration of the adhesive into the collagen fiber net-
work, six clusters further split the specimen into regions that
show the difference in monomer concentrations and penetra-
tion over the specimen. Since the wet bonding technique was
used, relative hydrophobic BisGMA could not penetrate as
well as hydrophilic HEMA, as observed from the relevant
cluster centroids in all the cluster sets. Similar results were
observed using univariate methods. However, while using
pseudo color representation of fuzzy clustered scores as dem-
onstrated in this work, all the zones can be observed on the
same image, rendering the interpretation easy. Also, separa-
tion of chemical spectra distinct to each chemical is inherent
in the algorithm, and digital subtraction of spectra is not
required.

4 Conclusion
The thickness of the adhesive-dentin hybrid layer can be ob-
served directly from the clustered images. According to the
clustering results, the specimen in this study is seen to be
composed of four broad zones: 1. adhesive zone with SB
adhesive; 2. lower layer preceding the interface containing
higher concentration of BisGMA compared to the interface,
and also independently penetrated through the hybrid layer; 3.
interface zone where the adhesive and collagen fibers have
intermingled �it has relatively lower BisGMA penetration�;
and 4. zone where BisGMA monomer has also managed to
penetrate a little independent of the interface. In addition, a
demineralized layer with lesser adhesive penetration com-
pared to the interface portion, and partially demineralized
dentin with almost no penetration of adhesive, were also dif-
ferentiated. As compared to the univariate method, not only
do the results image adhesive penetration more accurately, but
they also enhance the confidence in the results based on the
fact that the imaging represents whole spectra and not inten-
sities at individual Raman shifts. For the first time, the chemi-
cal and structural altered regions in the adhesive/dentin inter-
face were clearly observed.

In summary, the application of multivariate methods to
analyze the adhesive/dentin interface provides a relatively un-
supervised technique to bring out the chemical detail in the

adhesive/dentin specimen compared to traditional univariate
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ethods. The principal component analysis defines a set of
asis spectra for the specimen. This obviates the necessity to
orry about overlapping peaks and other such problems,

ince each principal component represents one or two chemi-
al constituents in the specimen that are uncorrelated with the
thers. By trial and error, six principal components are found
o be significant in this study. Their scores form the input for
lustering. In the current study, an analysis of six centroid
pectra give significant information about the spatial distribu-
ion of chemical components in the specimen. Principal com-
onent analysis serves to get rid of noise and greatly reduce
he size of the basis needed to describe the spectral dataset.
he specific implementation of PCA results as an input to

uzzy c-means clustering is somewhat novel. When input into
he clustering algorithm, the scores of the principal compo-
ents split the specimen into regions characteristic of their
hemical composition. The cluster centroids represent spectra
haracteristic of the cluster; the cluster represents the region
s a whole, as opposed to studying individual pixels or inten-
ities. In other words, the spectra are classified in a systematic
anner so that the study of a relatively small number of spec-

ra directly gives information about the distribution of various
omponents in the specimen, as opposed to univariate meth-
ds that involve a more trial-and-error-like procedure along
ith a necessity for a-priori knowledge of the specimen.
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