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Abstract. The mitotic spindle is a subcellular protein structure that
facilitates chromosome segregation and is crucial to cell division. We
describe an image processing approach to quantitatively characterize
and compare mitotic spindles that have been imaged three dimen-
sionally using confocal microscopy with fixed-cell preparations. The
proposed approach is based on a set of features that are computed
from each image stack representing a spindle. We compare several
spindle datasets of varying biological (genotype) and/or environmen-
tal (drug treatment) conditions. The goal of this effort is to aid biolo-
gists in detecting differences between spindles that may not be appar-
ent under subjective visual inspection, and furthermore, to eventually
automate such analysis in high-throughput scenarios (thousands of
images) where manual inspection would be unreasonable. Experi-
mental results on positive- and negative-control data indicate that the
proposed approach is indeed effective. Differences are detected when
it is known they do exist (positive control) and no differences are
detected when there are none (negative control). In two other experi-
mental comparisons, results indicate structural spindle differences that

biologists had not observed previously. © 2005 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1955531]
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1 Introduction

The current state of the art in imaging is capable of providing
biologists with tremendous amounts of data that can easily
overwhelm any quantitative analysis capabilities of a human.
The research we present begins to address the need for auto-
mated, quantitative processing of image data in an area of
important and currently evolving functional genomics re-
search. Data related to functional genomics research is often
captured in image and/or volumetric form by a variety of
instruments and techniques. Some examples include tradi-
tional optical microscopy, atomic force microscopy," decon-
volution microscopy,2 and laser-scanning  confocal
microscopy.” Presently, much of the analysis of the acquired
image data is performed manually and subjectively—a well-
trained scientist examines the image and attempts to make
qualitative observations concerning its contents relative to
what the scientist has seen before. To conduct statistically
meaningful experiments, however, it is necessary that many
images be produced and analyzed quantitatively, as has been
noted for some time.* It can be, of course, prohibitively time
consuming for a human to manually analyze a large number
(i.e., thousands) of images, and virtually impossible for them
to do so quantitatively, especially with 3-D data. Hence there
is a need for automated image processing and data analysis in
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many image-related, functional genomics applications. The
work we present begins to address that need as it relates to
understanding the mitotic spindle.

The mitotic spindle is a crucial structure involved in cell
division (mitosis) in eukaryotes (animals, plants, fungi). The
spindle is a tubulin-based protein structure, formed during
mitosis, that is critical in chromosome segregation, which is
the process of splitting duplicated genetic material between
two developing daughter cells. A simple illustration of the
spindle is shown in Fig. 1. During cell division, spindle mi-
crotubules attach to the centers (centromere) of the chromo-
somes, which are arranged along the cell’s equator or equato-
rial plate. The chromosomes, comprising two sister
chromatids, split at this point of attachment and are pulled
apart by the spindle. The spindle ends, toward which the split
chromosomes are pulled, are referred to as the spindle poles.
The spindle poles, which are located at opposite ends of the
whole cell, are in fact organelles known as centrioles.

Biologists are particularly interested in the mitotic spindle
for several reasons. Abnormal function or disruption of the
spindle will lead to cell death, abnormal cell growth, and/or
genomic instability because of inaccurate chromosome
segregation.5 Inaccurate chromosome segregation can lead to
genomic instability, which is a characteristic common to all
cancer cells. Furthermore, many anticancer agents (e.g., Taxol
or paclitaxel) are actually tubulin poisons that attack the
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Chromosomes

Spindle Poles

Fig. 1 A simple 2-D illustration of the mitotic spindle. The spindle
emanates from the spindle poles and facilitates chromosome segrega-
tion. During mitosis (cell division) the separated chromosomes are
pulled by the spindle toward the poles into two forming daughter
cells. The 3-D shape of the spindle is approximately ellipsoidal.

spindle structure to prevent cell division, which proceeds ram-
pantly in cancer cells.® Finally, many proteins interact with
the spindle in unknown or poorly understood ways. The prin-
cipal motivation for the image analysis work we present here
is to develop tools that will aid cell biologists in understand-
ing the roles of spindle-associated proteins, and potentially
pharmaceutical companies, in searching for novel tubulin poi-
sons or understanding subtle effects of other compounds on
the spindle. An improved understanding of protein roles may
also help uncover future anticancer drugs and drug targets.

To date, there has been only limited work regarding quan-
titative 3-D or 4-D (i.e., 3-D plus time-lapse imaging of living
cells) imaging of the spindle. Electron tomography’ has been
employed to find the 3-D structure of the early spindle in
hopes of uncovering structure-function relationships in mu-
tated yeast. Although this approach provides excellent spatial
resolution, the noisy images would be challenging to analyze
automatically, and the required manual efforts limit potential
high-throughput capabilities. Courtesy of advances in
microscopy® and imaging techniques,’ the need for quantita-
tive 3-D (and 4-D) analysis of the spindle has been clearly
demonstrated. In fact, 4-D imaging of mitosis has shown that
different modes of cell division are linked to 3-D rotations
and asymmetric orientation of the spindle body in the fruit
fly,"" the mouse," and in plant cells.'” 3-D live-cell imaging
has also been employed to study the effects of mutations on
the mitotic spindle in hopes of uncovering protein
interactions."? Although some of this previous research has
employed quantitative measures,'™'""'* more extensive and
descriptive measures, such as those we present in this work,
will significantly improve current methodology. Additional
research'>"® has been primarily qualitative. We note that a
succinct version of the research in this work has been previ-
ously presented."”

The remainder of this work is organized as follows. In Sec.
2, we briefly discuss the cell biology research that motivates
our image analysis work. We then turn our attention to the
analysis of the images in Sec. 3, where we describe image-
based features we have developed to characterize the spindle.
Note that the aim here is not one of traditional pattern recog-
nition, where we usually seek to discriminate between differ-
ent classes. Instead, we seek to define measures or features
that can quantify the spindle, and then use those features to
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compare spindles so that subtle differences might be detected
statistically. In other words, the problem at hand is not one of
discrimination, but rather quantification and comparison. In
Sec. 4, we describe the results of our approach on several
datasets of interest, and then we conclude in Sec.5 with a few
summary remarks and notes about our future research goals.

2 Biology Background

As noted in Sec. 1, there are many proteins associated with
the spindle whose roles are poorly understood or completely
unknown. One way that biologists investigate the roles of a
protein in cells is to produce and study gene-knockout (KO)
organisms, where “knockout” means that a gene is removed
from the organism. Since specific proteins are encoded by
corresponding genes, the role of a protein can be elucidated
by examining the phenotype of the organism deficient in that
protein due to gene-KO.

The mouse has been employed as the model organism in
this work for several reasons. The mouse is the best-
characterized experimental mammal and has the most well-
defined genetics of any nonhuman vertebrate. Extensive ho-
mologies between mouse and human genomes have been
established, thus permitting the mouse to be used as a model
system for many human genetic diseases. Finally, both the
genome and the embryo of the mouse can be manipulated
with relative ease, allowing for an expansion of the genetic
resources necessary for functional interpretation of genes and
DNA sequences.

The cells used for all imaging studies are known as mouse
embryonic fibroblasts, or MEFs. Primary and immortalized
MEFs derived from wild-type (normal) or one of two different
knock-out mice are employed. Primary MEFs can only divide
in cell culture for a limited period of time. Immortalized cells,
on the other hand, have undergone a random mutation (or
mutations) and hence gain the capability to continue to divide
in culture indefinitely. The two knockout or mutant MEFs
employed herein are deficient for either the p53 gene or the
Vparp gene. (When italicized, p53 and Vparp refer to genes.
When given with capital letters, P53 and VPARP refer to the
proteins encoded by those genes.) p53 is a tumor suppressor
and its function has been linked to a variety of cellular pro-
cesses, such as cell cycle control, cell apoptosis (programmed
cell death), and transcription activation.'®™!8 p53-deficient
MEFs also exhibit a significantly higher probability of becom-
ing immortalized relative to wild-type MEFs. Vault
poly(ADP-ribose) polymerase (VPARP) was originally iden-
tified as a minor protein component of the vault ribonucle-
oprotein (RNP) particle," whose function may be involved in
molecular assembly or subcellular transport.””** In addition
to its association with cytoplasmic vault particles, subpopula-
tions of VPARP localize to the nucleus and the mitotic
spindle, indicating VPARP may have other cellular
functions.'”* In this study, we are interested to determine if
Vparp deficiency in mammalian cells can lead to changes in
spindle structure.

As a positive control for abnormal spindle characteristics,
we treated some immortalized cells (see Sec. 4) with the tu-
bulin poison Taxol (also known as paclitaxel), which is a mi-
crotubule depolymerization inhibitor. To function properly,
microtubules must be in a dynamic state of polymerization
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Fig. 2 An example spindle image computed by z-sum projection.
Note that only the fluorescent-stained tubulin is visible.

and depolymerization.® Since the mitotic spindle is composed
of microtubules, it is well known that treatment with Taxol
will certainly induce structural changes. Taxol is also widely
used as an anticancer drug because of its effect on the spindle.
For imaging, fixed-cell (i.e., nonliving) MEFs are em-
ployed. These fixed cells were probed with fluorescent, anti-
tubulin antibodies that bind to the tubulin structure of the
MEF spindles. The cells were then imaged with a confocal
laser scanning microscope to produce 3-D image stacks. An
example z-sum projection image (i.e., projected to 2-D by
summing along the optical axis) is shown in Fig. 2.

3 Image Analysis

In this section, we describe 49 features that are computed for
each spindle image stack. These features are intended to com-
pare spindles to one another, as we later describe in Sec. 4, for
the purposes of detecting potential differences that are not
necessarily apparent to a human observer. The first few fea-
tures, described in Sec. 3.1, are independent of the spindle
shape and are related purely to the distribution of image in-
tensity values in each stack. The remaining features, described
in Sec. 3.2, are all related to the spindle morphology.

We note that oftentimes a single image stack will contain
the spindle in which we are interested as well as microtubules
from other cells nearby. To alleviate the contribution of this
background, we manually select a polygonal region of interest
(ROI) for each image stack, and all processing done refers
only to the voxels in the ROIL For each image stack, a z-sum
projection is computed and displayed; the ROI is manually
selected from this representation. This z-sum ROI is used for
all images in the stack. At present, with respect to the time
required to prepare cells and acquire images, this manual pro-
cessing is not a limitation. As we intend to move toward high-
throughput analysis in ongoing efforts, automatically detect-
ing and isolating the spindle from the background will
become a future topic of research.

3.1 Intensity Features

The intensity values in our data are proportional to the fluo-
rescent signal intensity in a voxel and therefore represent the
density of tubulin in that voxel. We consider a voxel whose
center is located at (x,y,z) and with intensity represented by
v(x,y,z). The intensity value is given approximately by
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p(x,y,z)dx dy dz, (1)

x+Ax/2  cy+Ay2  y+Ay/2
v(x,y,2) = j

x=Ax/2 Y y-Ay2 S y-Ay/2

where (Ax,Ay,Az) are the voxel dimensions and p(x,y,z) is
the local fluorescent marker, and hence tubulin, concentration.
Assuming that p(x,y,z) is approximately constant across the
voxel, we get

v(x,y,2) = AxAyAzp(x,y,z). (2)

Since our images were captured with constant voxel dimen-
sions and microscope settings, and our preparations were
made consistently, intensity-based features may indicate
variations in tubulin concentration that are of interest to the
biologist. Please see Sec. 3.3, however, regarding caveats on
the use of intensity features. Of the 49 features in our com-
plete set, we compute eight such intensity features as de-
scribed next.

FO1: Mean. The mean gray value u of all voxels. A higher
mean value may indicate a higher concentration of tubulin in
the mitotic spindle.

FO2: Standard deviation. The standard deviation o of all
voxels. A high standard deviation may indicate a very irregu-
lar distribution of tubulin in the mitotic spindle.

FO3: Histogram skewness. The skewness i/ is a measure of
the asymmetry of a distribution.”* A low skewness value in-
dicates a nearly symmetric distribution, while a high skew-
ness value indicates a very asymmetric distribution. Skewness
is given by

ms
= _" 3

where m,, is the g’th central moment. For our discrete distri-
butions, where we have bins given by b(i) and bin masses or
probabilities given by p(i), the central moments are computed
according to

my= 2 [b(0) - ulpli). (4)

where w represents the distribution mean and is given simply
by u=2,b(i)p(i). For the histogram, b(i) € [0,255] repre-
sents the 8-bit gray value and p(i) is the number of voxels of
gray level b(i) divided by the total number of voxels. Char-
acteristics of the histogram, as measured by this feature and
FO4 through FO8, may indicate more subtle variations in tu-
bulin distribution than captured by features FOI and FO02
alone.

FO4: Histogram kurtosis excess. The kurtosis excess is a
measure of how peaked a distribution is.”* Low values indi-
cate a “flat” distribution, while high values indicate a distri-
bution with a strong peak. Kurtosis excess is defined by

Kk=——3. (5)

With this definition, the normal (Gaussian) distribution has
k=0, while an exponential distribution has k=6.

FO5 through 08: Histogram principal component analysis
coefficients. We represent each histogram as a 256-
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Fig. 3 Principal component analysis of the histograms. From top to
bottom, the curves represent the mean histogram and first two princi-
pal components, respectively. Recall that the mean histogram is sub-
tracted from every histogram prior to PCA and that the principal com-
ponents are orthonormal basis vectors with both positive and negative
values. Only the gray-level range from [0 100] is shown because the
values from [101 255] are very small relative to those on [0 100].

dimensional vector (for the [0, 255] gray-value range) and
then perform principal component analysis (PCA)25 on the
collection of histograms. Note that the first step in PCA is to
subtract the ensemble mean histogram, which implies that
there will be negative values in the resulting vectors. The
computed principal components form an orthonormal basis
for the ensemble; a sample histogram can be reconstructed as
a weighted sum of these basis vectors added to the ensemble
mean. We keep as features the PCA coefficients correspond-
ing to the first four principal components, which represent the
four most significant shape variations in the histograms. The
first four PCA coefficients then represent “how much” of the
corresponding component is in a given histogram. In Fig. 3,
we show the mean histogram and the first two principal com-
ponents. Note in Fig. 3 that only the gray-level range from [0
100] is shown, as the values greater than [101 255] are quite
small relative to those over [0 100].

3.2 Structure Features

We now turn our attention to features that are related to the
mitotic spindle structure or morphology. Each of the features
described in this section is related to the shape of the spindle
and/or the 3-D tubulin distribution in the spindle. Since the
spindles are in fact 3-D objects, and we cannot guarantee that
they are all imaged in the same pose, we must first establish
an internal coordinate system for each spindle stack. We let
each voxel in the image stack represent a point mass with
mass equal to the voxel’s intensity value. For each spindle
image stack, we compute the center of mass and the principal
axes of inertia®® 2 to serve as the origin and axes, respec-
tively, of a spindle-centric coordinate system.

The principal axes of inertia represent mutually orthogonal
axes about which a rigid body can be dynamically balanced,
meaning its angular velocity is parallel to its angular momen-
tum. A rigid body that is imparted with an angular velocity in
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the direction of (i.e., made to spin about) a principal axis will
continue to spin. The principal axes are given by the eigen-
vectors of the moment of inertia matrix

I= Ixy Iyy Iyz s (6)

where the elements are computed as follows. Let v(x,,y,,2,)
represent a voxel value in the image stack, (x,,y,,z,) the
physical coordinates in the original coordinate system,
(X,¥,Z) the center of mass relative to the original coordinate
system, and M the total spindle mass (i.e., the sum of all the
voxel intensities); then the elements of I are given by

[EEEvm,ywzg (yo+z> _ME+D), ()

X,

o Y Z0

[222 KoYz )2+ |~ M@ +2), (8)

Yo Yo %o a

X,

[EEEvm,ymzo 22 +yo> CME ). (9)

o Yo Zo

X YorZo) | + My, (10)

o Yo %o .

Ixy=_ _2 E Exoyov(

L X

u’ymzo) +M7E, (11)

o Yo %o .

I.=- 72 > 2 x,z,0(x

L X

Iyz=_ EEEYOZOU(Xm)’mZU) +Mﬁ (12)

L Yo Yo 2o

We then compute the eigenvalues and eigenvectors of I and
construct a new reference frame whose origin is at the center
of mass and whose three axes are in the direction of the eigen-
vectors (i.e., the principal axes). The eigenvalues are known
as the principal moments of inertia and we sort the axes in the
new reference frame (x,y,z) in order of descending eigenval-
ues. Hence, a position (x,,y,,z,) in the original coordinate
system is transformed into (x,y,z) in the spindle-centric co-
ordinate system by

X alT Xo—X
y|={a || v.-7 | (13)
z al [\z,-7

where the three-vector a; represents principal axes i, given as
coordinates in the original reference frame, sorted by de-
scending eigenvalue. In Fig. 4, we illustrate the principal axes
of inertia using a simple ellipsoidal model, which is a reason-
able approximation of the 3-D spindle shape. In such an el-
lipsoid, the first principal axis would point in the direction of
the narrowest part and the third principal axis would point in
the direction of the longest part (pole to pole). For each
spindle, we transform each voxel’s coordinates into this
spindle-centric coordinate system and then compute the
shape-based features described next.
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2

Fig. 4 Illustration of principal axes of inertia using an ellipsoidal model, where a uniform distribution of mass has been assumed (shading is only
to enhance 3-D effect). The three axes are shown with lengths inversely proportional to their moments of inertia. Axis 3 corresponds to the
pole-to-pole axis of the spindle. Axes 1 and 2 form the equatorial plate of the spindle (where the chromosomes align). The spindle represented by
this model is somewhat flattened, with the spread along axis 1 being somewhat less than that along axis 2 (which implies a larger moment of inertia
about axis 1). These illustrations all represent orthographic projections.

F09 through F12, F19 through F22, and F29 through F32:
Mass percentiles. These features are the intervals in microns,
along each principal axis, that enclose a certain percentage of
the total spindle mass (i.e., tubulin content). They are com-
puted as follows for axis 1 (and identically, with appropriate
variable substitutions, for axes 2 and 3). Define N bins, X,
along the first principal axis (i.e., axis 1) with centers at

k-1
(xmax - xmin) > (14)

X = Xpmin + m

for k=1,...,N and with bin width

€= Xmax ~ Xmin (15)
N-1

The k’th bin, X}, is given by the interval X,=(x;—€/2,x;
+€/2]. In our experiments, described later in Sec. 4, we use
N=200, and x;, and x,,, are set to —10 and +10 pum, re-
spectively. We now compute the projection of spindle mass
onto axis 1, p;(xg), as follows:
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L
M

> 2 2 vy, (16)

xeXp y oz

pilx) =

where M represents the total spindle mass. Note that the
normalization by M provides invariance to intensity scaling
of the image stack. An example of p;(x;), computed for one
spindle image stack, is shown in Fig. 5. Recalling the ellip-
soidal model of Fig. 4, the first principal axis (i.e., x) is
aligned along the shortest part of the spindle. In the spindle
shown in Fig. 2, for example, axis 1 would approximately
correspond with the optical axis, perpendicular to the plane of
the page. The mass distribution along this axis hence de-
scribes the tubulin distribution in the spindle along the short
axis of the spindle equatorial plate. Similar plots for p,(y;)
and ps(z;) are shown in Figs. 6 and 7 for axes 2 and 3,
respectively. Note that axis 3, which corresponds to the lowest
principal moment of inertia, is oriented in the pole-to-pole
direction of the spindle. Since tubulin concentrations tend to
be higher at the poles, we can see in Fig. 7 that ps(z;) tends to
be bimodal, where the two peaks correspond to the poles.
Since we are interested in variations in spindle morphology
that may be asymmetric, we orient all of the axis 3 mass
projections, p3(z;), so that the larger peak is to the left (i.e.,
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Fig. 5 Mass projected onto the first principal axes p;(x).

the positive side of axis 3 points toward the lower concentra-
tion peak).

An axis 1 mass percentile, A;(f), is the minimum-width
interval about x=0 in the spindle-centric coordinate system
that contains the fraction f of the total mass and is computed
as follows:

A(f) = arg min[ >

A | xe[-an2,A2]

m(xk)] > A

We compute and store A;(f)—as well as A,(f) and
A;(f)—for f€{0.25,0.50,0.75,0.95}. These features repre-
sent the distribution of tubulin along the first, second, and
third principal axes.

F13 through F16, F23 through F26, and F33 through F36:
Mass PCA coefficients. We represent the mass projected onto
each axis, pi(xy), p2(vi), p3(zx) as N vectors and perform
PCA on the collection of these vectors. We keep as features
the four coefficients corresponding to the first four principal
components. In Fig. 8 we show the mean projection of mass
onto axis 1 and the first two principal components. Similar
plots are shown for axes 2 and 3 in Figs. 9 and 10, respec-
tively.

F17 and F27: Axes 1 and 2 mass skewness. The skewness,

0.025

0.021

0.015F

7,

001+

0.005

-6 —4 -2 0 2 4 6 8 10
um

S0 =
Fig. 6 Mass projected onto the second principal axes p,(y,).
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0.0021

Fig. 7 Mass projected onto the third principal axes p3(xy).

i, of the mass is projected onto axis 1, ¢, using Egs. (3) and
(4) with p,(x;) representing the distribution and x; the bins.
Axis 2 is similarly computed. Because of the bimodality, we
describe the axis 3 skewness and kurtosis computation sepa-
rately.

F18 and F28: Axes 1 and 2 mass kurtosis excess. The kur-
tosis excess k; of the mass is projected onto axis 1, p;(x;),
using Egs. (4) and (5). Axis 2 is similarly computed.

F37: Axis 3 mass kurtosis excess. The kurtosis excess k3 of
the mass is projected onto axis 3, p3(z), using Egs. (4) and
(5). Because of the bimodal nature, we only compute kurtosis
excess for the entire curve. We then compute skewness and
kurtosis excess for each side of the curve individually.

F38: Axis 3 mass left-side skewness. The skewness i3, of
p3(z) for k=1,...,N/2.

F39: Axis 3 mass left-side kurtosis excess. The kurtosis
excess K3, of ps(z;) for k=1,...,N/2.

F40: Axis 3 mass right-side skewness. The skewness 3, of
ps(zy) for k=N/2+1, ... ,N.

F41: Axis 3 mass right-side kurtosis excess. The kurtosis
excess K3, of p3(z;) for k=N/2+1,...,N.

F42 through 45: Radial mass percentiles about axis 3.

0.03

0.02f

0.01f

-0.5 L

-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 8 Mean and first two principal components, from top to bottom,
respectively, of mass projected onto the first principal axis.
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0.03

0.02f

QOLF - ree s

-6 —4 -2 ] 2 4 6 8 10
Fig. 9 Mean and first two principal components, from top to bottom,
respectively, of mass projected onto the second principal axis.

With the final two sets of features (F42 through 45 and F46
through 49), we consider the radial distributions of spindle
mass about axis 3. To achieve rotational invariance about axis
3, we represent v(x,y,z) as v(r,z), where r=\x2+y% We
construct P radial bins, B; for i=1,..., P, centered on

i-1
ri=ﬁrmax’ (18)
and defined by R;=[r;,r;,;). For features F42 through 45, we
use P=200 and r,,,=10 wm. Similar to the computation for
mass projected onto axis 1 (recall FO9 through 12), we can
then compute the radial distribution of the mass (about axis
3), for the entire spindle p,(r;) as follows:

pr)=7 S Solra), (19)

reR; z

where again M represents the total spindle mass. The radial
mass percentiles A,(f) are then given by

0.015

(1311 4 RERERERRTRRPPRRPPR OB

_0;510 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 10 Mean and first two principal components, from top to bottom,
respectively, of mass projected onto the third principal axis.
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Fig. 11 Radial-axis 3 mass distribution p,; shown as a surface plot.

A(f) = arg mAin[ S pr) >f] . (20)

r=<A

In other words, A,(f) is just the minimal radius enclosing the
fraction f of the entire mass. We compute and store A,(f) for
f€{0.25,0.50,0.75,0.95}

F46 through 49: Radial-axis 3 mass PCA coefficients. In
F42 through 45, we computed the radial distribution of the
total spindle mass about axis 3. With features F46 through 49,
we consider a similar radial distribution, but in “slices” that
are parallel to axes 1 and 2 and placed along axis 3. We define
radial bins again just as we did for F42 through 45 in Eq. (18).
We also define bins Z; along the third principal axis that are
centered on

j—1
Zj =Zmin t Q _1 (Zmax - Zmin)’ (2] )
with bin width
S= Zmax ~ Zmin i (22)
0-1

and given by Z;=(z;—6/2,z;+6/2]. With these definitions,
we define the radial-axis 3 mass distribution to be

Pr(rnz) = /\% > 2 (o). (23)

ri€R; Z;€Z;

Here we use P=50, =50, 7, =10 pwm, z,,;,=—10 um, and
Zmax=+10 wm. This implies that the mass distribution
pa(ri,z;) is a 2-D, 50X 50 array. In Fig. 11 we show an
example of p,5 as a surface plot. The two peaks correspond to
the spindle poles. We raster scan the 50 X 50 array making a
2500-dimensional vector and then perform PCA on the com-
plete data from all spindles, keeping as features the first four
PCA coefficients.
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3.3 Some Notes on the Features

As noted in Sec. 3.1, we employ eight intensity-based fea-
tures. We note, however, that such gray-level features would
not necessarily be consistent across different laboratory and/or
experimental settings. Such features would, in fact, vary un-
der intensity scaling, which might be caused by changes in
voxel dimensions, microscope settings, and/or preparation
protocol. Our experimental results, discussed in Sec. 4, par-
ticularly the negative-control experiment of Sec. 4.6, support
the use of such gray-level features within our own carefully
controlled experimental conditions. In fact, in only one
experiment—Sec. 4.4—do the intensity-based features com-
prise a significant number of the observed feature variations.
Variations in intensity- or histogram-based features might
prove useful under controlled conditions, as they might imply
abnormalities in tubulin distribution that are not necessarily
manifested in the structure-based features.

All of the structure-based features described in Sec. 3.2
characterize the spatial distribution of tubulin in the spindle.
Statistical variations in these features indicate spatial varia-
tions in the tubulin distribution that are of biological signifi-
cance, perhaps indicating phenotypic variation. The localiza-
tion of such tubulin distribution variations to a specific region
of the spindle may also indicate localized protein activity
and/or protein-protein interaction. Currently, the localization
of such structural variations (as characterized by statistically
differing features) is done manually by examining the plots
(e.g., mass projections) related to the varying features, as
shown in Sec. 4.

We also note the invariance of the structural features to
both intensity scaling and changes in voxel dimensions. As
mentioned previously in Sec. 3.2 [see Eq. (16)] the
morphology-based features are computed from mass distribu-
tions that have been normalized by the total spindle mass
(M). It should be readily apparent that this normalization
provides intensity invariance for these features. Furthermore,
recall that in doing the mass projections, we represent each
voxel v(x,y,z) as a point mass centered at (x,y,z) whose
value is directly proportional to the voxel dimensions and the
local tubulin concentration, as given by Eq. (2). For the mass
projections, these point masses are projected onto much
lower-resolution (by a factor of about 50) reference frames.
Because of this, the morphology-based features are nominally
invariant to changes in the voxel dimensions. For example,
suppose we subdivide a single voxel of size (Ax,Ay,Az) into
eight voxels of size (Ax/2,Ay/2,Az/2). Assuming that
p(x,y,z) is approximately constant over (Ax,Ay,Az), then
each of the smaller voxels will have value equal to
1/8v(x,y,x). When doing the mass projections, however, the
net contribution of either configuration will be equivalent.
This also holds true as we increase the voxel size, so long as
the voxel dimensions do not approach the bin sizes (which are
about 50 times larger in this work) used for the mass projec-
tions.

Finally, we note that many of the features computed here
are correlated. Recall, however, that discrimination is not the
goal, but rather characterization and comparison. In fact, the
correlation of some features in this endeavor is beneficial in
helping to reduce contributions from uncorrelated noise
across different spindle images.
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4 Experimental Results

In this section, we present and discuss results of comparing
the features from Sec. 3 for several datasets. The acquired
experimental data comprised 44 images stacks from six cell
types: the first three types are primary MEFs and the last three
are immortalized MEFs, as described next.

1. Wild type (WT). Primary MEFs from normal (nonmu-
tant) mice. Eight image stacks.

2. VPARP knockout (VPARP-KO). Primary MEFs,
VPARP encoding gene is removed. Eight image stacks.

3. P53 knockout (P53-KO). Primary MEFs, p53 encoding
gene is removed. Four image stacks.

4. Immortalized (IM). Immortalized MEFs derived from
primary p53-KO MEFs. Eight image stacks.

5. Immortalized, Taxol treated at low concentration (IM-
TaxLo). Immortalized MEFs derived from primary p53-KO
MEFs, treated with 0.01-uM Taxol for 24 h. This serves as a
positive control, since the anticancer drug Taxol is a tubulin
poison and is known to give rise to structural effects on the
spindle. Eight image stacks.

6. Immortalized, Taxol treated at a higher concentration
(IM-TaxHi). Immortalized MEFs derived from primary
p53-KO MEFs, treated with 0.1-uM Taxol for 24 h. Eight
image stacks.

Images were obtained using a Leica SP2 laser scanning
confocal microscope fitted with a 100X oil-immersion, plan
apochromatic objective and using a pinhole setting of 0.9 airy
units. The resulting image stacks contained voxels of approxi-
mately 0.03X0.03X0.08-um in size. Each image was
1024 X 1024 pixels and the stacks ranged from about 40 im-
ages deep to 100 images deep, depending on the size and/or
pose of the imaged spindle. The 49 features described in Sec.
3 were computed for each of the 44 spindle image stacks.

We performed six different pair-wise comparisons of the
datasets, including both positive control and negative control
comparisons. For the comparisons, we used the two-sample ¢
statistic*” to determine if the individual feature means differed
significantly between the datasets. We note as significant any
features whose means were statistically different at P <<0.03.
For the ¢ static, the P value represents the likelihood that the
differences in the two means would be observed purely by
chance. In other words, any observed differences in the fea-
ture means at P <<0.03 would occur less than 3% of the time
randomly. In the context of the 49 features that we compare,
we expect that one or two features will almost always appear
different at P<<0.03, since 0.03X49=1.47. We discuss the
six pair-wise comparisons in Secs. 4.1 through 4.6.

4.1 Comparison 1: IM versus IM-TaxLo (Positive
Control)

Here we compared immortalized (IM) MEFs to IM MEFs that
were treated with 0.01 — uM Taxol for 24 h. We found that 10
of the 49 features differed at P <<0.03. We note that this com-
parison represents positive-control data, since the treatment
with tubulin poison (Taxol) is known to affect the spindle
structure, often in ways that are visually apparent to a biolo-
gist. We therefore expect to see statistically significant differ-
ences in several of our features. Since we found ten such
features, which is significantly more than the one or two we
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Fig. 12 Scatter plot of features F28 and F30 for the IM versus IM-
TaxLo comparison of Sec. 4.1.

would expect randomly, we conclude that some of the differ-
ences in the treated versus untreated spindles are indeed cap-
tured by the features we have implemented.

The ten features that differed were FO5, F28 through F34,
F46, and F48. In Fig. 12, we show a scatter plot of features
F28 and F30 for this comparison. F28 is the kurtosis excess of
the axis 2 projected mass and F30 is the interval that contains
50% of the total spindle mass projected onto axis 3 (see Sec.
3.2). As we can see in Fig. 12, F28 for the IM-TaxLo data
tends to be lower, indicating less peakedness than the IM data.
This implies that the tubulin concentration along axis 2 is
slightly lower near the spindle center in the Taxol treated
cells. This indeed can be seen in Fig. 13, where we have
plotted the mean axis 2 mass projections for both the IM and
the IM-TaxLo data. Regarding F30 [A(0.5)], it is evident in
Fig. 12 that it tends to be lower for the Taxol treated cells,
indicating that these spindles are shorter along axis 3 (i.e.,
more concentrated toward the center) than the untreated cells.
This can be seen in Fig. 14, where we have plotted the mean
axis 3 mass projections for both the IM and the IM-TaxLo
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Fig. 13 Mean of axis 2 mass projections for the IM versus IM-TaxLo
comparison of Sec. 4.1.
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Fig. 14 Mean of axis 3 mass projections for the IM versus IM-TaxLo
comparison of Sec. 4.1.

data. The shorter spindles reflect the consequences of the
microtubules’  inability to undergo  polymerization/
depolymerization due to the Taxol treatment.

4.2 Comparison 2: IM-TaxLo versus IM-TaxHi

In this comparison, we were interested to see if the higher
concentration of Taxol produced any significant spindle
changes relative to the cells treated with a lower concentration
of Taxol. We found only one feature that was different at P
<0.03, indicating that, according to our feature set, there are
no statistically significant differences between the cells treated
with low or high concentration of Taxol. In other words, at the
Taxol concentrations tested, approximately equivalent
changes were made to the spindle.

4.3 Comparison 3: WT versus IM

Here we compared normal MEFs to immortalized p53-KO
MEFs. It has been shown that the absence of the p53 tumor
suppressor gene can lead to spindles with multiple poles (as
opposed to the normal two), which is a defect that is readily
apparent to a human observer in spindle imagery (and can
lead to cancer).'® Although multipolar spindles were observed
in the preparations, only bipolar IM spindle images were ac-
quired for comparison. In other words, all of the IM spindle
images we have used appear visually normal to a biologist.

In WT versus IM comparison, we found 26 features that
differed at P<<0.03. These features were FO1 through FO5,
FO9 through F14, F22, F24, F28 through F33, F37 through
F41, F46, and F47. Obviously the number of differing fea-
tures seems to indicate significant differences between the
normal (WT) and the IM cells. We note that this result is
important, since abnormalities in normal-appearing, bipolar
immortalized spindles have not been observed or reported to
date. Several features related to the projection onto axis 3 are
significantly different (F29 through F33, F37 through F41).
We show in Fig. 15 the mean projections of mass onto axis 3
for the wild-type and IM cells. We can see from Fig. 15 that
the poles of the IM spindles—represented by the two peaks in
each curve—tend to be further apart (i.e., the IM spindles are
longer) and the IM spindles tend to have less tubulin, relative
to the poles, concentrated around their equatorial plates.
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Fig. 15 Mean of the axis 3 mass projections for the WT versus IM
comparison of Sec. 4.3.

4.4 Comparison 4: WT versus VPARP-KO

In this comparison, we were interested to see if the computed
features indicated any differences between normal (WT)
spindles and VPARP-KO spindles in hopes of determining if
VPARP has a role at the spindle. For the WT versus
VPARP-KO comparison, we found six features that differed
at P<<0.03; these were FO1, FO2, F06, FO7, F18, and F28.
Since six features are more than the one or two we would
expect to see purely by chance, this comparison seems to
indicate that the VPARP-KO spindles are indeed different
from the WT cells, but that the differences may be subtle. The
difference of six features, however, is indeed significant when
we consider the negative control experiment discussed in Sec.
4.6. We note that one of the differing features is F28, which is
the kurtosis excess of the mass projected onto axis 2. In Fig.
16, we show the mean axis 2 projected mass of the wild-type
cells and the VPARP knockout cells. It is apparent that the
VPARP-KO cells are indeed flatter about the center of mass,
indicating decreased tubulin concentration near the equatorial
plate of the spindle. The results of this comparison may indi-
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Fig. 16 Mean of the axis 2 mass projections for the WT versus
VPARP-KO comparison of Sec. 4.4.
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Fig. 17 Number of differing features for the 70 comparisons of WT
versus p53-KO from Sec. 4.5. The mean number of differing features
is 16.46 and the median is 16.

cate a structural variation in the spindle, related to VPARP
deficiency, that warrants further biological experimentation.

4.5 Comparison 5: WT versus p53-KO

Here we compared wild-type cells to p53-KO primary (i.e.,
not immortalized) cells. We compared the four p53-KO image
stacks to every possible combination of four WT samples se-
lected from the set of eight. For each of the 70 possible com-
binations, we performed the pair-wise feature comparison as
discussed earlier and recorded the number of features differ-
ing with P <<0.03. The results indicated that the mean number
of differing features was 16.46 and the median number of
differing features was 16. A histogram of the number of dif-
fering features is shown in Fig. 17, where we see the fewest
number of differing features was 13 in four of the 70 cases.
We note that, if one considers the chances of randomly ob-
serving different features, the observed spread in Fig. 17 is to
be expected. Twelve specific features differed at P <<(0.03 in
all 70 combinations; these were F20 through F23, F26, F29
through F33, F45, and F46. Many of these features are asso-
ciated with the projections onto axes 2 and 3. We show in
Figs. 18 and 19 the means of the projections onto axes 2 and
3, respectively, for the WT and p53-KO cells. These plots
indicate that the p53-KO spindles are generally larger than the
WT cells, having a longer pole-to-pole distance as well as a
more uniform distribution of tubulin throughout the spindle
structure (as opposed to pronounced peaks at the poles).
Structural differences in such normal-appearing p53-KO
spindles have not been previously observed by biologists.
Some recent research,30 however, indicates that pS3 associates
to centrosomes in mitosis, which might suggest the mecha-
nism for such changes.

4.6 Comparison 6: WT versus WT (Negative Control)

In this final, negative-control comparison, we compared wild-
type MEFs to wild-type MEFs. Since the cell types are the
same, we expect there to be no significant differences in the
features. We selected all possible subdivisions of the eight
WT image stacks into two sets of four image stacks each; this
results in 35 possible subdivisions. For each of the 35 possible
combinations, we performed the pair-wise feature comparison
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Fig. 18 Mean of the axis 2 mass projections for the WT versus
p53-KO comparison of Sec. 4.5.

as discussed before and recorded the number of differing fea-
tures. The results indicated that the mean number of differing
features was 1.2 and the median number of differing features
was in fact zero, as predicted. These results also indicate that
the differences we have detected in the other comparisons are
indeed significant, especially in the case of the WT versus
VPARP-KO comparison, where only six features were found
to differ with P <<0.03.

5 Conclusions

We describe an image analysis approach to detect quantitative
differences in mitotic spindles that have been imaged, in 3-D,
using confocal microscopy. This approach is based on a set of
features or numerical descriptors that are computed from each
3-D image stack representing a spindle. Using these features,
we compared several datasets that were characterized by dif-
ferent biological (genotype) and/or environmental (drug treat-
ment) conditions. The experimental results on positive- and
negative-control data (i.e., where we knew there should be
significant differences or no differences, respectively) indicate
that the proposed approach is indeed effective at detecting
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Fig. 19 Mean of the axis 3 mass projections for the WT versus
p53-KO comparison of Sec. 4.5.
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differences in spindle properties. Furthermore, in two of the
experimental comparisons where mutant MEFs were com-
pared to wild-type (normal) MEFs, the results indicate spindle
differences that were previously unobserved by biologists.

Finally, we note some directions of future research. The
work presented was applied only to fixed-cell (i.e., nonliving)
preparations. The mitotic spindle, however, is a dynamic
structure. In future efforts, we will be imaging and analyzing
spindles in living cells, where dynamic variations may also be
uncovered. We also intend to apply the image analysis ap-
proach to additional gene-knockout models that are deficient
in other spindle-associated proteins of interest. Finally, as a
long-term goal, we plan to incorporate the methods developed
here into a software tool to be used by cell biologists in their
own laboratories and to provide for data exchange between
different research groups.
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