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1 Introduction

Abstract. A ¢cDNA microarray is a complex biochemical-optical sys-
tem whose purpose is the simultaneous measurement of gene expres-
sion for thousands of genes. In this paper we propose a general statis-
tical approach to finding associations between the expression patterns
of genes via the coefficient of determination. This coefficient mea-
sures the degree to which the transcriptional levels of an observed
gene set can be used to improve the prediction of the transcriptional
state of a target gene relative to the best possible prediction in the
absence of observations. The method allows incorporation of knowl-
edge of other conditions relevant to the prediction, such as the appli-
cation of particular stimuli or the presence of inactivating gene muta-
tions, as predictive elements affecting the expression level of a given
gene. Various aspects of the method are discussed: prediction quan-
tification, unconstrained prediction, constrained prediction using ter-
nary perceptrons, and design of predictors given small numbers of
replicated microarrays. The method is applied to a set of genes under-
going genotoxic stress for validation according to the manner in
which it points toward previously known and unknown relationships.
The entire procedure is supported by software that can be applied to
large gene sets, has a number of facilities to simplify data analysis, and
provides graphics for visualizing experimental data, multiple gene in-
teraction, and prediction logic. © 2000 Society of Photo-Optical Instrumentation
Engineers. [S1083-3668(00)00204-5]
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gene set can be used to predict the transcriptional state of

Sequences and clones for over a million expressed sequence&”omer gene. A feature of the method is that it allows one to

tagged site$ESTS are currently widely available. Character-
ization of these genes lies behind the ability to collect them.
Only 14% of identified clusters contain genésven tenu-
ously) associated with a known functionality. One way of
gaining insight into a gene’s role in cellular activity is to
study its expression pattern in a variety of circumstances and
contexts, as it responds to its environment and to the action of
other genes. Recent methods facilitate large scale surveys o
gene expression in which transcript levels can be determined
for thousands of genes simultaneously. In particut&iNA
microarrays result from a complex biochemical-optical sys-
tem incorporating robotic spotting and computer image for-
mation and analysis.® Since transcription control is accom-
plished by a method which interprets a variety of ingufs,

we require analytical tools for expression profile data that can
detect the types of multivariate influences on decision making
produced by complex genetic networks. In this paper we dis-
cuss a statistical-operational framework for finding associa-
tions between expression patterns of genes by determiningst
whether knowledge of the transcriptional levels of a small

incorporate knowledge of other conditions, such as the appli-
cation of particular stimuli or the presence of inactivating
gene mutations, as predictive elements, thereby broadening
the classes of information that can be simultaneously evalu-
ated in modeling biological decision making. Our focus is on
a general framework: the determination-prediction paradigm
for analysis of gene interaction, comparison of constrained
f’:md unconstrained prediction in the face of limited microarray
replications, estimation of the degree of determination given
limited replications, interpretation of the results, and software
to assist interpretation. Experimental results will be given for
the purposes of explanation and verification. A particular in-
stance of the general methodology has been applied in a sepa-
rate biological papefsee Sec. ¥° A methodological perspec-
tive is important for appreciating the range of applicability of
the proposed framework, which is not limited ¢®NA mi-
croarrays, but can be used for studying interaction in the con-
text of other kinds of arrays.

The mechanism of intergene association is not a factor in
atistical prediction. The only factor is the ability to predict
the target level from the predictor levels. The predictor genes

may be upstream or downstream from the target gene in the
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actual genetic network, some may be upstream and some L
downstream, or they may be distributed about the network in
such a way that their relation to the target gene is based on
chains of interaction among various intermediate genes. X1
Whatever the relationship of the predicting genes to the pre- X2
dicted, if knowledge of their states allows us to better predict
the expression level of the target gene, then we infer there is )fs
some relationship—the better the prediction, the stronger the : s
relation. Xm
As the first step in carrying out nonlinear genomic predic-
tion on gene expression profiles, data complexity is reduced
by thresholding the changes in transcript level into ternary
expression datd:—1 (down regulatey] +1 (up regulatey] or | - Y
0 (invariand]. This simplification is motivated by the way in —_—
which analysis is carried out @DNA microarrays and by the other ~———|
need to collect many samples where gene expression levels variables .
vary due to altered cellular states. To find connections be- .
tween genes, enough conditions must be sampled to detect the —
independent functioning of different genetic networks. This
amount of sampling requires data from numerous arrays.
When viewed across many arrays, the absolute intensity of
signal detected by each element of the detector in this hybrid-
ization based assay can be seen to vary based both on théneasured, the accuracy of those measurements, and the
process of preparing and printing the EST elements, and theamount of data that can be obtained to degigy statistical
processes of preparing and labeling tINA representations sampling.
of the RNA pools. This problem is solved via internal stan- The most general nonlinear predictdilter) for discrete
dardization. An algorithm that first calibrates the data inter- gata can be represented by a logic table. For ternary data,
nally to each microarray and statistically determines whether (_1 o 41}, the table will have a row for each input variable
the data justify the conclusion that expression is up regulated gng one for the output variablé,oq. If there arem input
or down regulated with 99% confidence is used to detect sig- yarigbles, then the table h&& columns andn-+ 1 rows, and
nificant changes in the transcript leviRequiring a high there ares®” possible predictorfogic tables. For instance, if

conflden_ce _Igvel insures that the Ioglcal_ valuek and 1 rep- there are two predictor variables; andX,, then a predictor
resent significant down and up regulation, and do not result . .
is defined by the table

from experimental variability.

Fig. 1 Nonlinear multivariate system.

X -1 -1 -1 0 0 0 1 1 1

X, -1 0 1 -1 0 1 -1 0 1
2 Nonlinear Multivariate Prediction Yoed Y1 Y2 Y3 Ys  Ys  Ye Y7 Ys Yo
The purpose of nonlinear multivariate predictiditering) is
to predict(estimate the output of a nonlinear system. Con- wherey,,y,, ..., yoe{—1,0,+1}. There are various ways
sider a systen$ having inputsX(,X,, ... X, to be observed  to mathematically represent nonlinear predictors, including
and measured, along with other inputs, which we may have novia logic circuitry.
way of measuring, and may not even be able to idertffg- The basic task is to design nonlinear predictors from the

ure 1. We do not assume a known mechanism by which the data. Qualitatively, the problem is straightforward: the theo-
output is determined, nor is there an assumption of causality. retically optimal predictor of the targétbased on the predic-

The prediction problem is to estimate the outputSofjiven tor variablesX;, X5, ... Xy, is unknown and must be statis-
only the inputsXy,X,, ... X, . As indicated in Figure 1, we tically estimated. The theoretically optimal predictor has
view Xq,X,, ... X, as input variables to a logical systdm minimum error across the population and must be designed
that yields a logical valu& o4 that best predicts the valoe (estimated from a sample by some trainingestimation

that S would provide, given the knowledge of the inputs method. The degree to which a designed predictor approxi-
X1,X5, ... Xy. Statistical training uses only the fact that mates the optimal predictor depends on the training procedure
X1,X5, ... X, are among the inputs 8, the outputY of S and the sample size. Even for a relatively small number of
can be measured, and a logical systersan be constructed  predictor genes, precise design of the optimal predictor re-
whose outputY .4 statistically approximate¥. The underly- quires a large number of experimental replications. The error,
ing scientific assumption is that the full syste®ris beyond €,, of a designed estimate of the optimal predictor must ex-
the reach of current technology and our knowledgeSas ceed the errore,,, of the optimal predictor. For a large num-

derived from its effect on observable input variables. The ber of microarrayse, approximatese,, but for the small
logic of L represents an operational model of our understand- numbers typically used in practice, may substantially ex-

ing. It is crucial to recognize that this operational model is ceedeg,. The irony of microarray analysis is that, although
contingent on existing technology, which determines the in- microarrays provide a large amount of data, these data are
puts that can be observed, the manner in which the inputs areobserved across a large set of gene expressions. As the num-
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spond to sample size and error. The horizontal dashed and
SN solid lines representqy and eqp.con respectively; the de-
creasing dashed and solid lines represdfte,] and

N El €connl, respectively. Ifnis sufficiently large, say\,, then

E[en]<E[econnl; however, ifn is sufficiently small, say,

Ny, then E[ econn]<E[€n]. The pointNg at which the de-
creasing lines cross is the cutoff: for>Ng, the constraint is
detrimental; forn<Ng, the constraint is beneficial. When
<Ny, the advantage of the constraint is measured by the
difference between the decreasing solid and dashed lines.

Even if a designed constrained predictor does not perform
well, the truly optimal constrained predictor may still perform
well. Moreover, a less constrained predictor might provide

N, Ny N, good prediction had we a sufficient number of microarrays to
Sample size design it. A critical point is that a constraint will err by miss-
ing a relationship, not erroneously indicating a strong rela-
Fig. 2 Errors of unconstrained and constrained predictors. tionship, thereby avoiding falsely attributing a predictive re-

lation where none exists. Missed relationships depend on the
constraint. Sometimes a system can be modeled in such a way
ber of system inputs grows, the amount of replicated obser- that & constraint can be derived that does not yield increased
vations necessary for precise statistical design of an optimal €Tor; however, this is not typical in nonlinear settings.
predictor grows rapidly. Since a designed predictor depends ~ Perceptrons form a constrained class of nonlinear predic-
on a randomly drawn sample data set, we use expectations foflOrs that have some attractive properties: simplicity, a linear-
statistical analysis. Hence, we are concerned with the differ- liké structure, and contributions of individual predictor vari-
ence, E[ €,]— e, between the expected error of the de- ables that can be easily appreciated. The savings in replicates
signed predictor and the error of the optimal predictor. A accelerates rapidly as the nurr_]ber of variables increases. B_l-
small difference means th& e, ] provides a good approxi- ~ nary perceptror)s are well studied and have long begn usgd in
mation t0 . pattern _recognltloﬁ?'l_z They are also used extensively in
The data problem can be mitigated if, instead of estimating digital signal processing, where they are calie¢arly sepa-
the best predictor, we estimate the best predictor from a con-able oper.atoré For predicting a target expression valte
strained set of predictors. Since the optimal constrained pre-from predictor variableX;,X5, ... Xy, a perceptron takes
dictor is chosen from a subset of all possible predictors, its the form of
theoretical error exceeds that of the best predictor; however,
the best constrained predictor can be designed more precisely _
from the data. The errok.,,, of an estimate of the optimal Vored=9(21 X1 T8 Xo+ - . - nXm D), @
constrained predictor exceeds the er@jy.co, of the opti-
mal constrained predictor. We are concerned with the differ-
ence,E[ €conp] — €opt-con-
If we let 6,=E[€,] €opt AN Seonp= El €conn] — €opt-cons
then the dilemma of finding good predictors of gene expres-
sion levels can be seen to be threefold:

whereg is a threshold function. Ainary perceptronis de-
fined by a binary threshold functiom(z)=0 if z<0, and
g(z)=1if z>0. A ternary perceptrons defined by a ternary
threshold functiong(z)=—1 if z<—-0.5,g(z2)=0if —0.5
=<7z=0.5,andg(z)=+1 if z>0.5.For two predictors<; and

X,, the perceptron takes the form,=g(a;X;+aX;
+b) andY eqis given by a table of the same form as that for
a general nonlinear predictor. Now, however,y,, ... Yq

are determined by, , a,, andb. There are3° possible two-
variable ternary nonlinear predictors, but the number of ter-

® €opt= €opt-con and 6n= 6conp ;

* €qptis decreased by using more predictor genesdjus
thereby increased;

* the stronger the constraint, the mofg,,, is reduced,  nary perceptrons is only 417, which is only about 6% of the
but at the cost of increasingpt.con- total. Design of a perceptron requires estimating the coeffi-
cientsa,,a,, . ..,any, andb. In the Appendix is a description

constrained settings, respectively. If we have access to an un-  one way of constructing predictors that are less con-

limited number of microarraygand the design procedures do  gtrained than perceptrons is to use neural netwbrk&These

not themselves introduce erjpthen we could make botb, comprise a form of operator representation that facilitates an
and d¢onp arbitrarily small and have easy increase and decrease in constraint. In neural-network
terminology, the perceptron of ECR) is called asingle-layer
€n™ €opt™ €opt-cor™ €conn - D neural networkwith activation function gA two-layer neural
In our low-replication environments,, can significantly ex-  Nnetworkis of the form

ceeddeonn - Thus, the error of the designed constrained pre-
dictor can be smaller than that of the designed unconstrained

r m
predictor. Y pred= a ( a X ) , 3
Figure 2 illustrates the design problem. The axes corre- pred™ QZLEO ig1 kgo Ik @
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Fig. 3 Two-layer neural network.

whereX,=1, andg, andg, are the activation functions for

the first and second layers, respectively. The graph structure

of the network is illustrated in Figure 3. Except fdp, each
node at the extreme left of the graph is an input variable; all
other nodes are callggrocessing unitsThe structure of the
network determines the level of constraint. Sometimes it can
be beneficial to extend a neural network beyond two layers;
however, the unconstrained optimal predictor can be obtained
by making the two-layer network sufficiently complex. There
are a number of training algorithms available for neural net-
works. A key problem with using neural networks for mi-
croarray prediction is that multiple-layer stochastic training

can be very imprecise when data sets are limited. In this paper

nificance of multiple linear regressidflt has recently been
employed in nonlinear digital signal processifg.

For linear prediction using MSE, the coefficient of deter-
mination can be analytically expressed in terms of second-
order moments of the observations and the target:

2
buy—puy
oZ

©)

n
X
Oin=—" >, axpy x,
oy k=1
wherep denotes the correlation coefficient. If we employ only
the correlation coefficienty x between two random variables
X andY, then our understanding concerns the predictiolY of
from X via a linear formula of the forn¥,.=axX+b. If it
happens thaK andY are jointly Gaussian, then the best pre-
dictor is linear, its error iso(1—p%), and Oou= bin
:P\Z(,x-

For most nonlinear predictors, including perceptrons, there
is no moment expression such as Es).for the coefficient of
determination. For the unconstrained ternary predictor,

€ _Eopt
aopt:M—a
“
wheree, is the MSE from predicting’ by applying T(uy),
the ternary threshold of the mean ¥f For constrained pre-
dictors, €qp is replaced byegpicon 10 ObtaiN Ggpicon, and
00 t-con~ 6opt-
For designed predictors, in E(), €, is replaced by, ,,

(6)

we restrict ourselves to unconstrained and perceptron predic-the error of the ternary threshold of the estimated mean result-

tors.

3 Coefficient of Determination

If Yis real valued and error is the mean-square eMBE),
E[]Yprea— Y|?1, then the best predictor of in the absence of
observations is its meajp,y , and the error isr%, the variance
of Y. The best unconstrained predictorYbased on the ob-
served real-valued variable$,,X,, ... X, is the condi-
tional expectation ofY given X,X,, ... ,X,,. There is no
general moment expression for the conditional expectation;
however, there is one for the best linear predictor. Its form is
that of Eq.(2), absent the threshold. The optimal coefficients
are determined by the vector equatidn-R*C, whereR is
the autocorrelation matrix for the random vectdr
=(1,X1,X5, ... Xy, Cis the cross-correlation vector faf
andV, andR" is the pseudoinverse &.1° For digital pro-
cessing, all predictors, including the conditional expectation
and the optimal linear predictor, must be quantized.

The coefficient of determinatioaf the optimal predictor is
the relative decrease in error due to the presence of the ob
served variables.

€.,— Eopt
goptz )

(4)

wheree. is the error for the best predictor in the absence of
observations. Since,,<e., 0= O,,=<1. A similar definition
applies for constrained predictors. So long as the constraint
allows all constant predictor§.< fop.con< 1. In statistics, the

ing from the sample data, and,, is replaced bye, to give

@)

E[ 6,], the expected sample coefficient of determination, is
found by taking expected values on both sides of &Q-

E[ €n]= €qpr @lways, and typicallfE[ €,]> €q,;, Where the in-
equality can be substantial for small samples. Unless
quite small, it is not unreasonable to assume #)a} pre-
cisely estimates ok, , since estimation ofuy does not re-
quire a large sample. Under this assumption, if we egf
=€, in Eq. (7) and take expectations, we obtain

€u E[ En]

€u

SinceE[ €n]> €qpt, EQs. (6) and (8) yield E[ 6,]< 0y, and
0, is a low-biased estimator af.

For a constrained optimizatiom, is replaced bye.q,, t0
obtain 6o, . In analogy to Eq.(1), if there is a sufficient
number of microarrays, then

E[0,]~ ®

9

As the number of replicates increases, the approximations get
better. In our low-replication environment, it is not uncom-
mon to haveE[ O¢onpn]>E[ 6,].

We need data to estimatk , as well as design predictors.
This, too, is problematic due to limited replicates. For uncon-

Oconn™ aopt—cong aopt% On -

coefficient determination has been used to measure the sigstrained predictorgand analogously for constrained predic-
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tors), one can use theesubstitutionestimate,d,, . For resub-
stitution, all of the sample data are used to traesign the
best predictor, estimates @f, , and €, are obtained by ap-
plying the thresholded estimated mean and the designed pre
dictor to all of the training data, and, is then computed by
putting these estimates into EGf). 6, estimatesd,, and
thereby serves as an estimatoregf. The resubstitution es-
timate can be expected to be optimistic, meaning it is biased
high (Sec. 6.

A different approach is to split the data into training and
test data, thereby producingoss validation A predictor is
designed from the training data, estimatesegf, and e, are
obtained from the test data, and an estimaté.aé computed
by putting the error estimates into E(/). Since this error
depends on the split, the procedure is repeated a number o
times and an estimat®,,, is obtained by averaging. For ran-
dom sampling, the estimates of , and e, are unbiased, and
therefore the quotient of Eq7) will be essentially(close to
being unbiased as an estimator 6f (Sec. 6. Sinced, is a
pessimistiolow-biased estimator off;, 6, is a pessimistic
estimator off;.

Another issue is the number of predictor variables. For
andr predictor variablesm<r, if €,,{m) denotes the error
for the m-variable predictor, therqp(r) =< €q,{m). The pre-
diction error decreases with an increasing number of vari-
ables. Hencedyp(r) = 0,,{m). However, with an increasing

number of variables comes an increase in the cost of estima-

tion (the difference between the errors of the designed and
optimal predictors Intuitively, the information added by ex-

panding the number of predictor variables becomes ever more
redundant, thereby lessening the incremental predictive capa-.

bility being added, whereas the inherent statistical variability
in the new variables increases the c@stor of design. Let-
ting dn(mM)=E[€,(M)]— €xp{m), we have 5,(m)=5,(r),
and it may happen that,(r)>e,(m) and 6,(r)<6,(m).
Since Oop(r)= op{m), we choose the maximum between
0,(r) and 6,(m) as our estimator ofl,(r).

Cross validation is beneficial becauggegives a conserva-
tive estimate off,.. Thus, we do not obtain an overly opti-
mistic view of the determination. On the other hand, training

General Nonlinear Framework for Analysis of Gene Interaction

genes not previously known to participate in response to IR
were found to be responsive. To further characterize the re-
sponsiveness of these genes to genotoxic stresses, the respon-
siveness of a subset of 9 of them was examined by blot assays
in 12 cell lines stimulated with ionizing radiation, a chemical
mutagen[methyl methane sulfonatéMMS)], or ultraviolet

(UV) radiation. The cell lines were chosen so that a sampling
of both p53 proficient andp53 deficient cells would be as-
sayed.

As a blind control, expression patterns for two fictitious
genes were created. Rules were made for the fictitious genes
depending on other gene states in the set, and the degrees of
concordance of the observations to the rules were varied.
AHA has the rule: up regulated {53 up regulated, down
fegulated if RCH1 an@53 down regulated. Full concordance
with the rule would produce 15 instances of up regulation and
5 instances of down regulation. The data set generated for
AHA includes 13 of the 15 up regulations and all 5 down
regulations. OHO has the rule: up regulated if MDM2 up
regulated and RCH1 down regulated, and down regulated if
p53 down regulated and REL-B up regulated. Full concor-
dance with this rule would produce four instances of up regu-
lation and five instances of down regulation. The data set
generated for OHO has the four expected up regulations plus
seven unpredicted up regulations, and only two of the five
predicted down regulations. The ternary data of the survey are
given in Table 1, where the conditions IR, MMS, and UV
have the values 1 or 0, depending on whether the condition is
or is not in effect.

The genes in the survey are not uniformly regulated in the
various cell types. All genes showed up or down regulation in
at least one cell type, however the numbers of changes regis-
tered across the lines are quite variant. Such a varied response
reflects the different ways in which different cells respond to
the same external stimuli based on their own internal states,
and is therefore a useful test set for the predictors. Since pre-
dictors operate by rules relating changes in one gene with
changes in others, it is necessary that a target gene change a
significant number of times in the observation set to get a
meaningful prediction. We limit the target genes to those ex-
hibiting at least 4 changes in the set of 30 observations,

and testing on the same data provide large computational sav-thereby eliminating MBP1 and SSAT as targets.

ings. This is important when searching over large combina-
tions of predictor and target genes. Our current biological goal

For the test gene®AHA and OHO), the designed predic-
tors identified both thg53 and RCH1 components of the

is comparative: we are interested in comparing coefficients of transcription rule set for AHA. For instance, using the percep-
determination to find sets that appear significantly determina- tron and data splitting gives 0.785 as tflew-biased esti-
tive of a particular target gene. In one case we are comparingmate of the coefficient of determination. Since many rule vio-
high-biased values; in another, we are comparing low-biased lations were introduced into the data set for the OHO gene, it
values. If it happens that resubstitution and cross validation was expected that the coefficient of determination would not
give similar comparative determinations, then using the resub- be high when using the predictors MDM2, RCH®£3, and
stitution estimator can be practically beneficial. We will ex- REL-B. This expectation was met.
perimentally consider this question in Sec. 4. For subsequent illustrations, determination results will be
presented as arrow plots, with the target gene at the right and
. the chained predictors plotted to the left. The determination
4 Experimental Results achieved by adjoining a predictor gene is placed on the arrow
Tests of the ability of both thé&ull-logic (unconstrainedpre- preceding it. For instance, in Figure 4, predictor 1 achieves
dictor and the perceptron to detect associations based ondeterminationd, for predicting the target gene, using predic-
changes in transcription level have been performed in the con-tors 1 and 2 together achieves determinatign and using
text of responsiveness to genotoxic stresses. As a result of gpredictors 1, 2, and 3 together achieves determinafion
microarray study surveying transcription of 1238 genes dur-  In cases where existing biological information provides ex-
ing the response of a myeloid line to ionizing radiat6r30 pectations, the predictions conform to these expectations. The
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Table 1 Ternary expression data.

Genes Condition
|- u.‘ M| E = E v
catine _|condion | |3 € ¥ X % 88335583 8]« F3
ML IK
ML MM 0 1 0
WMoltd
Molid MM 0 0 0 0 0 1 0
SR
SR 0 0 0 0 1 0O
[.LE L] R
A549 MMS| 0 0 0 O c 00 0 oo 1 0
A549 Vi 0 0 0 O 00 00O of o o 1
WCF7 1]
0 0 0 0 O o 1 0
— MCF7] OV 0 0 0 0 0 O Qo o 1
REO IR|
RKD| NMMS| 0 0 0 0 o o 1 0
 RKO| uvl, 0 0 0 O 0 0 0 0 O oo o 1
~ CCRF-CENM
| CCRFCEM| 0 O 00O O oo 1 0
ALE0
HLG0 MM 1] 0 0D 1 0
K562 114
- K58  MMS| 0 0 0 O 0 0O 0 OO0 O 0O 0Qq 0 1 0
HTZ5Y K|
H1Z99 MMS| O 0 0 0 0 0 D 1 0
H129%] V| 0 0 0 O 0 0 0 0 0 0 1
RROIER
REKO/EG 0 0 00 o 1 ul
RKO/EG 0 0 O 0 0 0 0 O 00 1
T47D 0 u o v 0o 0 0 |
"T47TD]  MMS| 0 0 O 0 0 0 0 O 0 0 1 0
T47D w o o o0 o 0O 00 0O 0 0 1
herie i
Rows are cell lines subjected to different experimental conditions.
Comparisons are to the same cell line not expozed fo the experimental treatment.
| -1 means expression goes down relative to unireated
| 0 means expression is unchanged relative to untreated
+1 means expression goes up relative to untreated |

biological expectation is that MDM2 is incompletely, but

strongly, predicted bp53. As shown in Figure ®), using the

perceptron and data splitting, this expectation is met. Addi-
tions of further genes tp53 do not increase the accuracy of

Predictor2

. 0, ¥ 6, 9,
Predictor 1 /— » Target

Predictor3

Fig. 4 Determination diagram (template).
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the prediction. Similarly, as it is known thpb3 is influential,

but not determinative of the up regulation of bqi#l and
MDMZ2, some level of prediction gh53 should be possible by

a combination of these two genes. This expectation is also
met [Figure 3b)]. Moreover, agp21 shows botp53 depen-
dent andp53 independent regulation in response to genomic
damagé? it was expected that the53 component would not
be recognized by the algorithmp53 was not selected for the
predictor. The algorithm chose the somewhat similar pattern
of expression exhibited by ATF3, with some supplementary
information from the MDM2 pattern as the best predictor of
p21 [Figure Jc)]. The prediction carries little significance.
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0259 ATES
P53 0473 MDM2 MDM2 MDMz —205 \ 03%6 p21
P21 0227 \ 0452 > 053
(a) (b) ©

Fig. 5 Determination diagrams where there is consistency with biological information.

Among the newly found, IR responsive genes, FRAL, gpq bconyn=0.461,respectively. Since the coefficient of the
ATF3, REL-B, RCH1, PC1, IAP-1, and MBP-1, a set of re- . |ogic predictor exceeds the coefficient of the perceptron,
lationships is seen that appears to link the behaviors of y,q optimal full-logic predictor has determination greater than
REL-B, RCH1, PC-1, MBP'l’, BCL3’, IAP'L and SSAT. A 461, We cannot derive this directly from the data, only from
set of perceptron and full-logic prediction trees for REL-B, the fact thalepe= €oprcon- IN fact, it could be that the optimal

PC-1, RCH1, and IAP-1 are shown in Figure 6. Both full full-logic predictor is a perceptron, but this cannot be shown
logic and perceptron predictors find a variety of apparently from the limited data we have

significant similarities of expression behavior within this set. Now consider prediction of BCL3 in terms of RCHI,

Some of these genes also ShO\.N a h|gh degrge of prEOIICtab'I'tySSAT, andp2l. The best full-logic and perceptron predictors
based solely on exposure to ionizing radiation. When these i N 2 :
genes are viewed with an eye to IR responsiveness, it be-Nave estimated determinatiodg=0.652and fcon=0.431,

comes apparent that they share an overall trend to show eX_r_espectively. Constraining prediction to a percgptron underes-
pression level changes in response to IR rather than to UV ortimates the degree to which BCL3 can be predicted by RCH,
MMS. Even though MBP1 and SSAT only responded to IR at SSAT, andp21. In fact, the true coefficient of determination
the very low rate of 17% of the possible chances, they re- for the optimal full-logic predictor is likely to be significantly
sponded only to this stimulus, and not to the other genotoxic greater than 0.652. Moreover, performance of the optimal
stimuli, and were thus associated with other genes showing full-logic predictor surely exceeds that of the optimal percep-
similarly high preference. Here we have only briefly outlined tron by more than the differential 0.221, but this cannot be
the manner in which the prediction methodology is consistent quantified from the data. We can, however, conclude with
with existing biological knowledge and has the power to find confidence that, to the degree that a perceptron approximates
new, potentially significant relations. In another paper, we linear prediction, the substantial superior performance of the
have gone into much greater biological detail for the same full-logic predictor shows that the relation among RCH1,
genotoxic stress data using the perceptron and resubstitutiorSSAT, and p21 (as predictors and BCL3 (as target is
estimation of the coefficient of determination. strongly nonlinear.

Using data splitting, we illustrate the error relation be- The different ways in which full-logic and perceptron pre-
tween the full-logic and perceptron predictors. The estimated dictors operate to find relationships can be illustrated by ex-
determinations of the best full-logic and perceptron predictors amining the prediction each makes for the target gene BCL3.
of BCL3 in terms of IAP-1, PC-1, and SSAT afg=0.334 In Figure 7, the upper pair of determination trees represents

SSAT SSAT RCHI1
0.717 0733 0.652 0.721 0.721
m.;» REL-B IR \¥ f° = L » REL-B
PC-1

ATF3 MBP- ATF3 BCL-3

1
R 0372 usuﬂm 0.564 - PC-1 R 0B \4)'”7[, — &o.m - PC1

1AP-1 TAP-1

ATF3

BCL3
o \km"r ——— RCHI R — ¥°‘2“/- ——+ RCHI

BCL3 ATF3

MBP-1 MBP-1

0.168 0.497 0.033 0420
IR L - [AP-1 R k > IAP-1

Fig. 6 Perceptronv (left) and full-logic (right) prediction trees.

Journal of Biomedical Optics * October 2000 * Vol. 5 No. 4 417



Kim et al.

SSAT 1AP-1 SSAT RCH1

R 0.059 u.w')/io. — L 0.667 » BCL3 R 0.0 LO. S«Hﬁo. — & 0.655 » BCL3

MBP-1 p21

SSAT RCH1 SSAT IAP-1

L u.uor omo&o,m — BCL3 R —%2 &osuﬁ 0‘3“\; M peL3

p21 MBP-1

Fig. 7 Interchanging the best full-logic (right) and perceptron (left) predictors.

the optimal gene sets chosen by the perceptiefty and full- ing to 0.5. In order not to break strings of ties féf, if
logic (right) predictors. The lower pair shows the reduced necessary, the box is expanded a minimal amount so that it
determination achieved when the genes optimum for the full- contains a contiguous string beginning at or befoge. We
logic predictor are used by the perceptron, and vice versa.consider the points in the box to be consistently estimated by
Differences in choices made by predictors result from the dif- the two methods. Those above and to the right of the box
ferent computation constraints they impose on input measure-correspond to too low or t0o high, ranking corresponding

ments. to 6,,, respectively. We letr, B, and y be the counts in,

We return to the issue of comparative determination using above, and to the right of the box, respectively. Four genes
the resubstitution esnmatoﬂ as opposed to the cross- have a sufficient number of predictor pairs with=0.5 to
validation estimatod,, . Due to the high and low biases 6f, make the numbers meaningful. For REL-B,s= 38, a=33,
and 0n, respectively, as estimators @, the cutoffs for B=5, andy=5; for IAP-1, Xy 5= 16, a=15, lg'zl, andy=1;
determination values considered meaningful will differ; nev- for PC-1, xos=33, =32, f=1, and y=5; and for AHA,
ertheless, the orders of the coefficients’ magnitudes may still x; =14, =14, =0, andy=0. Even when there are points
be consistent. Such consistency has useful practical conseoutside the box, they tend to be close to the box. Moreover,
quences. Under present technological and cost constraints, exwere we to letx= 25 be the box cutoff for REL-B, theg=0
periments typically have less than 100 replicatescroar- and y=1. While the last values support the notion that
rays. Hence, the statistics being computed from the sample training-data estimates can be used for comparison purposes,
data are likely to be imprecise estimators of the corresponding the values fowx, s are more significant because they represent
pOpulation parameters. The coefficient of determination is be- the manner in which one might look for Significant determi-
ing used mainly for comparative purposes to sift out poten- nation by selecting a determination cutoff. Choosing a deter-
tially strong control relations among genes and external con- mination value greater than 0.5 enhances the consistency be-

ditions. Consequently, overly optimistic estimates are not tween the two orderings. For instance, for REL-B ang
necessarily detrimental, nor are overly pessimistic estimates.= 26 4=26, 3=0, andy=0.

If resubstitution and cross-validation error estimation yield

coefficients that rank predictor-target sets in much the same

order, then either can be used for comparative purposes with-5 Software

out detriment, and the significantly faster computation of re- We briefly describe the determination software that has been

substitution estimates becomes a deciding factor. Only consis-developed(and continues to be developetb process mi-

tency among large coefficients is important, because thesecroarray data and provide tabular and graphical tools to assist

indicate potentially significant biological control relations. analysis. While the data set in this paper consists of relatively
Using two predictors per target, we have ranked the coef- few genes, the interactive software can be used in a worksta-

ficients by using both methods and compare the orderings. Fortion environment for gene sets approaching 1000 genes. More

each target gene, a graph has been constructedxwiitues genes can be used as predictors in a supercomputing environ-

being the determination rank& ordey for 0 and they value ment. In an experiment involving a collection of microarrays,

for x being the determination rank f(ﬂr corresponding to the
predictor pair having rank. We have also plotted the graph

of the coefficients versus the training-estimation ranks. The 150D Ranks (PC-1): 0733(1) - 0.462(33) , COD vs. Ranks: PC-1
graphs for PC-1 are shown in Figure 8. If the orderings are o

consistent, then théx,y) values should lie relatively close to 80 /rf— 08

the 45° line through the origin. Quantification of this condi- 2 % _:' = a os

tion is problematic due to the large number of rank tieséor T I 34

that result from the maximization done during estimation. 20 / 02 k
Nonetheless, we have noticed that for ranks corresponding to _/__ K
0,=0.5there is strong consistency. This consistency can be % G 100 % 50 100
experimentally quantified by counting the number of points e renksitrai)

lying in the box determined by the, rank, X 5, correspond- Fig. 8 Comparison of determination ranks.
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Perceptron: farget = 12

05F

goodness

0.4

0.2

01

1 0
irput

Fig. 9 Determination graph for increasing number of predictor variables.

each might contain up to 8000 genes, but only those genes
whose expression levels change some minimal number of
times across the experiment are considered. Those that change
only a few times provide very little information and do not
yield meaningful determination coefficients. A consequence
of this information requirement is that far fewer than the full
8000 genes are likely to be considered.

For a given target gene, the software computes the deter-
mination coefficients for all possible combinations of one,
two, and three predictors. With a further restriction on the
number of genes, it can also handle four predictors. Since we
are computing a biased sample coefficient, given the modest
number of microarrays we typically have for an experiment, it
is prudent not to use too many predictor variables. The deter-
mination coefficients are computed offline and stored in tables
for a researcher to access. For more than a single variable,
these tables are quite long. Therefore a number of tools have
been included in the software to facilitate online analysis.

e The user can specify a range in each table, from the
predictor set with theth highest determination to the set
with the mth highestn<m.

times any gene or gene set appears in the table, including
the possibility of omitting any combination containing a
particular gene.

» Of special interest are situations in which adjoining a

gene to a gene set yields a significant increase in deter-
mination; and therefore one can choose a threshaldd
display only those predictor sets for which there is at
least aéd increase in determination over the determina-
tion for any subset for which the gene has been omitted.

One can delete from the table any gene whose expres-
sion levels did not change some minimal number of
times across the experiments.

» At any time, the software can be queried for a specific

target and predictor set.

Various graphical tools are included. For any predictor set
and target, a graph can be plotted online to show the increase
in determination as the predictor set grows. The order of in-
clusion of the predictor genes can be specified, or the graph
can be automatically displayed so that the best single predic-
tor in the gene set is shown first and, given that gene, the best

* Once a range is specified, the table can be scrolled 4 are shown next, and so on. Figure 9 shows the graph for

downward.

the training-data determination estimate of AHA by predictor

* If one is interested in one or more genes being required genes PC-1, RCH1, angb3 where the numbering refers to
for determination, these can be specified and a new tablethe gene listing in Table 1.

displayed with this requirement.

Rather than simply show the performance of a single pre-

- If a gene, or gene set, has high determination, then ad- dictor set for a given target gene, the software allows visual-
joining further genes to the set can only increase the ization for various predictor sets for a given target gene, or for
determination; therefore one can limit the number of more than a single target gene. Figurda @isplays perfor-
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(a) after redundancy removed (b) a predictor gene specified

(c) threshold specified (d) multiple target genes

Fig. 10 Multiple predictor set visualization. (a) After redundancy removed, (b) threshold specified, (c) a predictor gene specified, (d) multiple target
genes.

mance bars for all possible predictor sets for the target geneor combination of genes, be included in the predictor set. This
ATF3 after redundancy has been removed. Redundancy oc-situation is shown in Figure 16), where SSAT is required to
curs because adjoining a gene to a predictor set may not im-be among the predictors. One may also simplify the visual-
prove the coefficient of determination. This redundancy need ization by specifying a threshold coefficient of determination
not be visualized. One may also require that a particular gene,that must be exceeded, as in Figuréc)@vhere the threshold
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is 0.25. If a user finds an interesting predictor set, then more 6 Statistical Considerations

detailed information, such as gene clone-id, can be pulled There are many statistical issues related to prediction in the
from the database. Visualization can be done for more than acontext of microarrays. We have previously emphasized the

single target gene. Figure () shows a display for multiple

need for employing a small number of predictor variables and

target genes in which the determination threshold 0.25 mustthe comparative manner in which the estimated coefficients

be exceeded.

are being used. Here in Sec. 6 we point out some general

For three predictors, a cubical graph can be generated on-relations between the expected error of a trained predictor and

line that displays the data for each predictor set. Figure 11

the error of the optimal predictor, and between the error esti-

shows the data graph for the gene set of Figure 9. For threemators and the errors they are estimating. We have postponed

genes,g;, g,, and gs, each microarray gives three values
that appear as a ternary-valued vect®i,x,,X3). At each
spatial point of the grapthaving coordinates-1, 0, or 1) are

plotted spheres whose sizes indicate the relative number of

times that a particular coordinate triple was associated with
the target value-1 (green sphepe O (yellow spherg and 1
(red sphergin the data. This graph shows the degree to which

the target values tend to separate the predictor vectors. The
actual counts are also displayed on the graph, along with the

fraction of time a predictor vector appears among the experi-
mental data. The graph can be rotated and viewed from dif-
ferent angles.

discussion of these issues until this point so as not to break the
flow of the paper for those interested mainly in methodology
and application software.

Figure 2 is generic but can be quantified for various pre-
diction settings. One case is directly applicable here. When
the predictors are gene expression levels and the target is a
condition, IR, MMS, or UV, the output of the predictor is
binary and the input is ternary. In this case,

3m
Von+1)

m
Elen]<e€opt —+
e

(10

Graphically, a ternary perceptron separates the spatialwhereeis the base of the natural logariththThe expectation
points in the graph by two planes so that, once designed, all of of the error for the designed filter is relative to all possible

the points in the same regigamong the three regionbave

samples from the joint probability distribution of the predic-

the same perceptron value. For any three-gene predictor setfors and target. The bound requires no distributional assump-
the software plots the optimal perceptron planes and displaystions and therefore may be loose for specific cases; nonethe-

the points within the appropriate regions as green, yellow, or
red, according to the perceptron output$, 0, and 1, respec-
tively. Figure 12 shows a graphical display of the perceptron

corresponding to Figure 9 and the data graph of Figure 11.

The display can be rotated.
Another facility shows a logical circuit implementation of
the optimal predictor for a given gene set. We use a

comparator-based logic architecture based on the signal rep

resentation theory of mathematical morphol8@ihis archi-

tecture is straightforward and reflects the decision procedures

inherent in a logical table. The expression levels of the pre-
dictor genes are input in parallel into two banks of compara-
tors, each of which is an integrated circuit of logic gates and

less, it indicates the exponential need for more replicates as
increases. The need can be cut if the input data is only binary,
with 3™ being replaced b2™ in the bound.

The resubstitution estimator is a low-biased estimator of
€n, E[€,]<E[€,],%* and a low-biased estimator of the error
of the optimal predictorE[ €,]< €. > The problem is exac-
erbated if we employ a large number of variables. This can be
seen by considering the MSE of the resubstitution estimator

‘of €,. An upper bound for this error is given by

" 2 6 m
E[|6n_6n| ]$53 ) (12)

where 3™ is replaced by2™ for binary input data? Once

each being denoted by a triangle having two terminals. One g4ain we see the exponential relationship between the number

terminal receives the inputx;,x,,x3) and the other has a
fixed vector input(tq,ty,t3). If (tq,t,,t3) is at the upper
terminal, then the comparator outputs kjt,, x,<t,, and
X3=<t3; otherwise, it outputs 0. I{t;,t,,t3) is at the lower
terminal, then the comparator outputs kjE=t,, x,=t,, and
X3=15; otherwise, it outputs 0. The outputs of each compara-
tor pair enter an AND gate that outputs 1 if and only if the

inputs are between the upper and lower bounds of the com-

parator pair. The AND outputs in the upper bank enter an OR
gate, as do the AND outputs of the lower bank. The outputs of

the OR gates enter a multiplexer. There are three possibilities:

(1) both OR gates output 0, in which case the multipldzed
hence the circujtoutputs 0;(2) the upper OR gate outputs 1
and the lower OR gate outputs 0, in which case the multi-
plexer outputs—1; (3) the upper OR gate outputs 0 and the
lower OR gate outputs 1, in which case the multiplexer out-
puts 1. Figure 13 shows the logic implementation for the per-
ceptron of Figure 12.

of replicates and the number of predictor variables.
Assuming random sampling, data splitting provides an un-

biased estimatoe,, : E[€,]=E[ €,]. On averageg,, estimates

the mean ofe,, and on average it provides a conservative

(pessimisti¢ estimate ofe,,. For largen the MSE fore, as

an estimator ok, is small, but not for smalh. The following

distribution-free bound indicates the dependencabh

1+6e?! 6

" Jm(n—=1)°

For smalln, e, provides imprecise estimation af,. The
randomized data-splitting method we use provides a precise
estimator of the error of predictors based on 20-sample de-
signed predictors within the overall 30 samples. However, the
precision of that estimator relative to the population of all
possible similar stress-related microarrays depends on the de-
gree to which the full sample reflects the entire population.

E[|%n_5n|2]$ (12
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Logic for 12: Goodness{opt)=0.946
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Fig. 11 Data graph.

. Assuming the validity of the approxima-

"

The preceding statistical considerations indirectly apply to settinge, ,=¢€
the coefficient of determination. The difficulty is that denomi- tion, we obtain the following inequalitiesE[ 6,,]< Oqp,
nator in Eq.(7) is a sample-dependent random variable. E[4,]=E[6,], E[6,]= fopt, and E[6,]=E[6,].*” Equa-
tions (10)—(12) can be rewritten to obtain bounds for the co-

Nonetheless, assuming that, can be precisely estimated
from a relatively small sample, approximation is obtained by efficient of determination.

Perceptron for 12: Goodness(opt)=0.945
i i |I.
A |
.llr II
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Fig. 12 Graphical display of perceptron
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@ more than thrge prgdictor genes without searching among all
possible relationships. In addition, further research is neces-
(©,-1,-1) sary to develop ways to determine suitably constrained pre-
dictors so as not to miss multivariate gene relationships due to
A@ either lack of datdinsufficient constraintor lack of flexibil-
ity (too much constraint

(-1,-1,-1)
(-1,-1, 1)

Appendix: Perceptron Training

AND Here in the Appendix we describe the design procedure for

Circuit for the ternary perceptron for the predictor expressions
¢1,-1,0) logic status -1(down) L X1, X5, ... Xy and target expressioyy and we explain error
MUX (— estimation. Letting X=(X;,X,, ... ,X,,) be the vector

¢.1Lh — formed by the predictor variables, for the purpose of training

A@» we take a randomly selected sequence
(X1, YY), (X2,Y?), ..., of training datapredictor vectors and

target values from the data. Due to a small data set, the

training data are recycled using random reordering on each
. 1,1) cycle. LettingA=(a;,a,, ... ,a,,b) be the perceptron coef-

ficient vector, training involves positing an initial vectag,
;;__,L—E”D) _E‘ applying A, to the predictor datX® to obtain an estimate

Yored,1 OF Y, @and using the error of this estimation to form a

©.01 transition ofA, to A, . Iterating this estimation and transition-
L1110 ing based on the training data yields a sequence of coefficient
vectorsAg—A;—A,— . ... Training is complete when the
A@' prediction error on the training data is zero or the changk in
Circuit for is insignificant. Predictor performance is then tested on a
¢1,1,0)  logic status 1(up) separate set of data pai(s{,Y). For the purpose of training
) o we use the absolute errpyY peq— Y.
Fig. 13 Logic circuitry for perceptron. Initialization of A can be either random or based on the

training data. Using the methodology of linear prediction, we
. can initialize A based on empirical estimates of the cross-
7 Conclusion covariance vecto€ betweenX andY and the autocorrelation
New methods for simultaneously measuring expression levelsmatrix R of V=(1X;,X,, ... Xy). In this way, A,

of large numbers of genes motivate application of nonlinear = R*C. From our experiments, prediction performance is not
multivariate expression analysis. This paper has demonstrated,ery sensitive to initialization; however, the initialization
that multivariate nonlinear predictofoth unconstrained and  R*+C sometimes yields better prediction and requires fewer
constraineg can ferret out known and constructed relation- jterations to converge. Transitioning Afcan be done in two
ships, and disclose common modes of transcriptional activity. yways (as we now describe

Significant nonlinear prediction can be used to indicate poten- A can be transitioned following each sample, meaning that
tial pathway connections and such purely statistical relation-  js transitioned sequentially based on the prediction error for
ships can be used to guide further investigations. The methodeach training sample. After all samples have been used once,
has the flexibility to allow predictions to be formulated based they are recycled in random order. Randomizing the training
not only on expression data, but also on the conditional func- data before each cycle helps to mitigate any systematic bias.

tionality of genes and on applied external stimuli. Current  The training algorithm is characterized by the update
technological and cost restrictions limit the number of mi-

croarray replicates; nonetheless, the degree of determination Anew— p(ld 4 A A (A1)

between predictor gene sets and target genes can be used in a ) . » . )

comparative manner to discover potentially interesting control Where the incremenbA is the transition size. Using the dot

relations among the vast collection of all possible relation- (*) Product to represent the sum in HQ) and inputting the

ships. next training sample(X,Y), we obtain thg estimatey eq
To employ the proposed determination methodology for :T[A(o_ld)_'v] based on the current coefficient vectat®®.

large classes of genes requires massively parallel computa-1"€ training error is defined by

tional capability. We are in the process of developing both the Al

requisite hardware and software. Currently we can process all e=(A 'V_Y)|Ypred_ Yl (A2)

possible predictor sets containing three or less genes fromalday/— Y determines the magnitudand sign of the tran-

among 600 genes, and can do this for 60 targets in less than &ijtion AA and Y rea— Y| gives the prediction errofrelative
week. Work is continuing on computation, database manage-to the training algorithth Note that

ment, software, and visualization tools. For the day when hun-
dreds or thousands of replicates will be available, intelligent 1. e>0 implies that we need to decread&'Ysv —Y by
algorithms are being developed to allow consideration of transitioningA;
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2. e<0 implies that we need to increage®®sv—Y by References

transitioningA;

3. e=0 implies that there is no error and we do not tran-
sition A.

We use the perceptron transitioda;=a;(Y—Yped X,
where 0<a;<1 are gain factors. The gain factors can be
useful for proper training, although in our experiments predic-
tion performance was not very sensitive to this choice.

The training algorithm for transitioning after each sample 4.

takes the following form:(1) initialize A; (2) feed in
X1,X2, ..., is some sequence, transitionidgat each step;

(3) repeat stef2) using randomized recycling of inputs until g

a stopping criterion is reached. Af does not change during a
cycle, this implies convergence of the training procedate
though it does not mean that the prediction error is O for each

training samplg We can use any of the following stopping 7.

criteria: Ag—A;—A,— ... converges; a fixed number of
iterations is chosen prior to training; or some minimum pre-
diction error tolerance is reached.

Rather than transition after each sample, we may update o.

only after the completion of a cycle of the training data. Un-
der this protocol,e and Aa; are computed following each
sample as before; howeveh, is not transitioned after each
sample. Instead, it is updated at the end of each cycle, with

AA being the sum of the stepwise increments during the 11.

cycle. Similar comments regarding the gain factors and stop- 12
ping criteria apply.

Prior to applying the algorithm, it was extensively tested 13.

on simulated data generated by a mathematical model based
on a thresholded linear operator corrupted by noise. Based on

our experimental results, we implemented the algorithm on 14,

the microarray data using the initializatioh,=R*C and

transitioningA at the end of each cycle. 15.

For data splitting, the perceptron is trained on the 20 train- ;¢
ing data sets and the errors of both the trained perceptron and

the initialized perceptron are computed for the training data. 17

The one that performs best on the training data is taken as the
designed perceptron and is then applied to the 10 test sets to
obtain a test error for the designed perceptron. This is re-

peated 256 times and the estimated error is taken as the aver-

age of these errors. Because of the small amount of test data®

and the stochastic nature of the training algorithm, the MSE
of the designed predictor may be greater than the MSE of the

thresholded mean. Since this would yield a negative coeffi- 20-

cient of determination, which is impossible, the estimate is set
to 0. Moreover, we apply the maximization discussed in the

paper: ifm<r and the estimate gives a greater coefficient for 21.

m variables, then we take the maximum betw@(w) and
0,(m) as the estimate of,(r).
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