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Abstract. A cDNA microarray is a complex biochemical-optical sys-
tem whose purpose is the simultaneous measurement of gene expres-
sion for thousands of genes. In this paper we propose a general statis-
tical approach to finding associations between the expression patterns
of genes via the coefficient of determination. This coefficient mea-
sures the degree to which the transcriptional levels of an observed
gene set can be used to improve the prediction of the transcriptional
state of a target gene relative to the best possible prediction in the
absence of observations. The method allows incorporation of knowl-
edge of other conditions relevant to the prediction, such as the appli-
cation of particular stimuli or the presence of inactivating gene muta-
tions, as predictive elements affecting the expression level of a given
gene. Various aspects of the method are discussed: prediction quan-
tification, unconstrained prediction, constrained prediction using ter-
nary perceptrons, and design of predictors given small numbers of
replicated microarrays. The method is applied to a set of genes under-
going genotoxic stress for validation according to the manner in
which it points toward previously known and unknown relationships.
The entire procedure is supported by software that can be applied to
large gene sets, has a number of facilities to simplify data analysis, and
provides graphics for visualizing experimental data, multiple gene in-
teraction, and prediction logic. © 2000 Society of Photo-Optical Instrumentation
Engineers. [S1083-3668(00)00204-5]
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1 Introduction
Sequences and clones for over a million expressed sequenc
tagged sites~ESTs! are currently widely available. Character-
ization of these genes lies behind the ability to collect them
Only 14% of identified clusters contain genes~even tenu-
ously! associated with a known functionality. One way of
gaining insight into a gene’s role in cellular activity is to
study its expression pattern in a variety of circumstances an
contexts, as it responds to its environment and to the action o
other genes. Recent methods facilitate large scale surveys
gene expression in which transcript levels can be determine
for thousands of genes simultaneously. In particular,cDNA
microarrays result from a complex biochemical-optical sys-
tem incorporating robotic spotting and computer image for-
mation and analysis.1–5 Since transcription control is accom-
plished by a method which interprets a variety of inputs,6–8

we require analytical tools for expression profile data that can
detect the types of multivariate influences on decision making
produced by complex genetic networks. In this paper we dis
cuss a statistical-operational framework for finding associa
tions between expression patterns of genes by determinin
whether knowledge of the transcriptional levels of a small
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gene set can be used to predict the transcriptional stat
another gene. A feature of the method is that it allows one
incorporate knowledge of other conditions, such as the ap
cation of particular stimuli or the presence of inactivatin
gene mutations, as predictive elements, thereby broade
the classes of information that can be simultaneously ev
ated in modeling biological decision making. Our focus is
a general framework: the determination-prediction paradi
for analysis of gene interaction, comparison of constrain
and unconstrained prediction in the face of limited microarr
replications, estimation of the degree of determination giv
limited replications, interpretation of the results, and softwa
to assist interpretation. Experimental results will be given
the purposes of explanation and verification. A particular
stance of the general methodology has been applied in a s
rate biological paper~see Sec. 4!.9 A methodological perspec
tive is important for appreciating the range of applicability
the proposed framework, which is not limited tocDNA mi-
croarrays, but can be used for studying interaction in the c
text of other kinds of arrays.

The mechanism of intergene association is not a facto
statistical prediction. The only factor is the ability to predi
the target level from the predictor levels. The predictor ge
may be upstream or downstream from the target gene in
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actual genetic network, some may be upstream and som
downstream, or they may be distributed about the network in
such a way that their relation to the target gene is based o
chains of interaction among various intermediate genes
Whatever the relationship of the predicting genes to the pre
dicted, if knowledge of their states allows us to better predic
the expression level of the target gene, then we infer there i
some relationship—the better the prediction, the stronger th
relation.

As the first step in carrying out nonlinear genomic predic-
tion on gene expression profiles, data complexity is reduce
by thresholding the changes in transcript level into ternary
expression data:@21 ~down regulated!, 11 ~up regulated!, or
0 ~invariant!#. This simplification is motivated by the way in
which analysis is carried out oncDNA microarrays and by the
need to collect many samples where gene expression leve
vary due to altered cellular states. To find connections be
tween genes, enough conditions must be sampled to detect t
independent functioning of different genetic networks. This
amount of sampling requires data from numerous arrays
When viewed across many arrays, the absolute intensity o
signal detected by each element of the detector in this hybrid
ization based assay can be seen to vary based both on t
process of preparing and printing the EST elements, and th
processes of preparing and labeling thecDNA representations
of the RNA pools. This problem is solved via internal stan-
dardization. An algorithm that first calibrates the data inter-
nally to each microarray and statistically determines whethe
the data justify the conclusion that expression is up regulate
or down regulated with 99% confidence is used to detect sig
nificant changes in the transcript level.10 Requiring a high
confidence level insures that the logical values21 and 1 rep-
resent significant down and up regulation, and do not resu
from experimental variability.

2 Nonlinear Multivariate Prediction
The purpose of nonlinear multivariate prediction~filtering! is
to predict ~estimate! the output of a nonlinear system. Con-
sider a systemS having inputsX1 ,X2 , . . . ,Xm to be observed
and measured, along with other inputs, which we may have n
way of measuring, and may not even be able to identify~Fig-
ure 1!. We do not assume a known mechanism by which the
output is determined, nor is there an assumption of causality
The prediction problem is to estimate the output ofS given
only the inputsX1 ,X2 , . . . ,Xm . As indicated in Figure 1, we
view X1 ,X2 , . . . ,Xm as input variables to a logical systemL
that yields a logical valueYpred that best predicts the valueY
that S would provide, given the knowledge of the inputs
X1 ,X2 , . . . ,Xm . Statistical training uses only the fact that
X1 ,X2 , . . . ,Xm are among the inputs toS, the outputY of S
can be measured, and a logical systemL can be constructed
whose outputYpred statistically approximatesY. The underly-
ing scientific assumption is that the full systemS is beyond
the reach of current technology and our knowledge ofS is
derived from its effect on observable input variables. The
logic of L represents an operational model of our understand
ing. It is crucial to recognize that this operational model is
contingent on existing technology, which determines the in-
puts that can be observed, the manner in which the inputs a
412 Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4
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measured, the accuracy of those measurements, and
amount of data that can be obtained to designL by statistical
sampling.

The most general nonlinear predictor~filter! for discrete
data can be represented by a logic table. For ternary d
$21, 0,11%, the table will have a row for each input variab
and one for the output variableYpred. If there arem input
variables, then the table has3m columns andm11 rows, and

there are33m
possible predictors~logic tables!. For instance, if

there are two predictor variables,X1 andX2 , then a predictor
is defined by the table

X1 −1 −1 −1 0 0 0 1 1 1
X2 −1 0 1 −1 0 1 −1 0 1
Ypred y1 y2 y3 y4 y5 y6 y7 y8 y9

wherey1 ,y2 , . . . ,y9P$21,0,11%. There are various ways
to mathematically represent nonlinear predictors, includ
via logic circuitry.

The basic task is to design nonlinear predictors from
data. Qualitatively, the problem is straightforward: the the
retically optimal predictor of the targetY based on the predic
tor variablesX1 ,X2 , . . . ,Xm is unknown and must be statis
tically estimated. The theoretically optimal predictor h
minimum error across the population and must be desig
~estimated! from a sample by some training~estimation!
method. The degree to which a designed predictor appr
mates the optimal predictor depends on the training proced
and the sample sizen. Even for a relatively small number o
predictor genes, precise design of the optimal predictor
quires a large number of experimental replications. The er
en , of a designed estimate of the optimal predictor must
ceed the error,eopt, of the optimal predictor. For a large num
ber of microarrays,en approximateseopt, but for the small
numbers typically used in practice,en may substantially ex-
ceedeopt. The irony of microarray analysis is that, althoug
microarrays provide a large amount of data, these data
observed across a large set of gene expressions. As the

Fig. 1 Nonlinear multivariate system.
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General Nonlinear Framework for Analysis of Gene Interaction
ber of system inputs grows, the amount of replicated obse
vations necessary for precise statistical design of an optim
predictor grows rapidly. Since a designed predictor depend
on a randomly drawn sample data set, we use expectations f
statistical analysis. Hence, we are concerned with the differ
ence, E@en#2eopt, between the expected error of the de-
signed predictor and the error of the optimal predictor. A
small difference means thatE@en# provides a good approxi-
mation toeopt.

The data problem can be mitigated if, instead of estimating
the best predictor, we estimate the best predictor from a con
strained set of predictors. Since the optimal constrained pre
dictor is chosen from a subset of all possible predictors, it
theoretical error exceeds that of the best predictor; howeve
the best constrained predictor can be designed more precise
from the data. The error,econ,n , of an estimate of the optimal
constrained predictor exceeds the error,eopt-con, of the opti-
mal constrained predictor. We are concerned with the differ
ence,E@econ,n#2eopt-con.

If we let dn5E@en#2eopt anddcon,n5E@econ,n#2eopt-con,
then the dilemma of finding good predictors of gene expres
sion levels can be seen to be threefold:

• eopt<eopt-con anddn>dcon,n ;

• eopt is decreased by using more predictor genes butdn is
thereby increased;

• the stronger the constraint, the moredcon,n is reduced,
but at the cost of increasingeopt-con.

dn anddcon,n are the costs of design in the unconstrained an
constrained settings, respectively. If we have access to an u
limited number of microarrays~and the design procedures do
not themselves introduce error!, then we could make bothdn

anddcon,n arbitrarily small and have

en'eopt<eopt-con'econ,n . ~1!

In our low-replication environment,dn can significantly ex-
ceeddcon,n . Thus, the error of the designed constrained pre
dictor can be smaller than that of the designed unconstraine
predictor.

Figure 2 illustrates the design problem. The axes corre

Fig. 2 Errors of unconstrained and constrained predictors.
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spond to sample sizen and error. The horizontal dashed an
solid lines representeopt and eopt-con, respectively; the de-
creasing dashed and solid lines representE@en# and
E@econ,n#, respectively. Ifn is sufficiently large, say,N2 , then
E@en#,E@econ,n#; however, if n is sufficiently small, say,
N1 , then E@econ,n#,E@en#. The pointN0 at which the de-
creasing lines cross is the cutoff: forn.N0 , the constraint is
detrimental; forn,N0 , the constraint is beneficial. Whenn
,N0 , the advantage of the constraint is measured by
difference between the decreasing solid and dashed lines

Even if a designed constrained predictor does not perfo
well, the truly optimal constrained predictor may still perfor
well. Moreover, a less constrained predictor might provi
good prediction had we a sufficient number of microarrays
design it. A critical point is that a constraint will err by miss
ing a relationship, not erroneously indicating a strong re
tionship, thereby avoiding falsely attributing a predictive r
lation where none exists. Missed relationships depend on
constraint. Sometimes a system can be modeled in such a
that a constraint can be derived that does not yield increa
error; however, this is not typical in nonlinear settings.

Perceptrons form a constrained class of nonlinear pre
tors that have some attractive properties: simplicity, a line
like structure, and contributions of individual predictor va
ables that can be easily appreciated. The savings in replic
accelerates rapidly as the number of variables increases
nary perceptrons are well studied and have long been use
pattern recognition.11,12 They are also used extensively i
digital signal processing, where they are calledlinearly sepa-
rable operators.13 For predicting a target expression valueY
from predictor variablesX1 ,X2 , . . . ,Xm , a perceptron takes
the form of

Ypred5g~a1X11a2X21 . . . amXm1b!, ~2!

whereg is a threshold function. Abinary perceptronis de-
fined by a binary threshold function,g(z)50 if z<0, and
g(z)51 if z.0. A ternary perceptronis defined by a ternary
threshold function,g(z)521 if z,20.5, g(z)50 if 20.5
<z<0.5,andg(z)511 if z.0.5.For two predictorsX1 and
X2 , the perceptron takes the formYpred5g(a1X11a2X2
1b) andYpred is given by a table of the same form as that f
a general nonlinear predictor. Now, however,y1 ,y2 , . . . ,y9
are determined bya1 , a2 , andb. There are39 possible two-
variable ternary nonlinear predictors, but the number of t
nary perceptrons is only 417, which is only about 6% of t
total. Design of a perceptron requires estimating the coe
cientsa1 ,a2 , . . . ,am , andb. In the Appendix is a description
of the stochastic training algorithm we have employed.

One way of constructing predictors that are less co
strained than perceptrons is to use neural networks.11,14 These
comprise a form of operator representation that facilitates
easy increase and decrease in constraint. In neural-netw
terminology, the perceptron of Eq.~2! is called asingle-layer
neural networkwith activation function g. A two-layer neural
networkis of the form

Ypred5g2F (
j 50

r

ajg1S (
k50

m

ajkXkD G , ~3!
Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4 413
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Kim et al.
whereX0[1, andg1 andg2 are the activation functions for
the first and second layers, respectively. The graph structu
of the network is illustrated in Figure 3. Except forX0 , each
node at the extreme left of the graph is an input variable; a
other nodes are calledprocessing units. The structure of the
network determines the level of constraint. Sometimes it ca
be beneficial to extend a neural network beyond two layers
however, the unconstrained optimal predictor can be obtaine
by making the two-layer network sufficiently complex. There
are a number of training algorithms available for neural net
works. A key problem with using neural networks for mi-
croarray prediction is that multiple-layer stochastic training
can be very imprecise when data sets are limited. In this pap
we restrict ourselves to unconstrained and perceptron predi
tors.

3 Coefficient of Determination
If Y is real valued and error is the mean-square error~MSE!,
E@ uYpred2Yu2#, then the best predictor ofY in the absence of
observations is its mean,mY , and the error issY

2, the variance
of Y. The best unconstrained predictor ofY based on the ob-
served real-valued variablesX1 ,X2 , . . . ,Xm is the condi-
tional expectation ofY given X1 ,X2 , . . . ,Xm . There is no
general moment expression for the conditional expectation
however, there is one for the best linear predictor. Its form is
that of Eq.~2!, absent the threshold. The optimal coefficients
are determined by the vector equationA5R1C, whereR is
the autocorrelation matrix for the random vectorV
5(1,X1 ,X2 , . . . ,Xm), C is the cross-correlation vector forY
and V, andR1 is the pseudoinverse ofR.15 For digital pro-
cessing, all predictors, including the conditional expectation
and the optimal linear predictor, must be quantized.

Thecoefficient of determinationof the optimal predictor is
the relative decrease in error due to the presence of the o
served variables.

uopt5
e •2eopt

e •

, ~4!

wheree • is the error for the best predictor in the absence o
observations. Sinceeopt<e • , 0<uopt<1. A similar definition
applies for constrained predictors. So long as the constrain
allows all constant predictors,0<uopt-con<1. In statistics, the
coefficient determination has been used to measure the si

Fig. 3 Two-layer neural network.
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nificance of multiple linear regression.16 It has recently been
employed in nonlinear digital signal processing.17

For linear prediction using MSE, the coefficient of dete
mination can be analytically expressed in terms of seco
order moments of the observations and the target:

u lin5
sXk

sY
(
k51

n

akrY,Xk
1

bmY2mY
2

sY
2

, ~5!

wherer denotes the correlation coefficient. If we employ on
the correlation coefficientrY,X between two random variable
X andY, then our understanding concerns the prediction oY
from X via a linear formula of the formYpred5aX1b. If it
happens thatX andY are jointly Gaussian, then the best pr
dictor is linear, its error issY

2(12rY,X
2 ), and uopt5u lin

5rY,X
2 .
For most nonlinear predictors, including perceptrons, th

is no moment expression such as Eq.~5! for the coefficient of
determination. For the unconstrained ternary predictor,

uopt5
em2eopt

em

, ~6!

whereem is the MSE from predictingY by applyingT(mY),
the ternary threshold of the mean ofY. For constrained pre-
dictors, eopt is replaced byeopt-con to obtain uopt-con, and
uopt-con<uopt.

For designed predictors, in Eq.~6!, em is replaced byem,n ,
the error of the ternary threshold of the estimated mean res
ing from the sample data, andeopt is replaced byen to give

un5
em,n2en

em,n

. ~7!

E@un#, the expected sample coefficient of determination,
found by taking expected values on both sides of Eq.~7!.
E@en#>eopt always, and typicallyE@en#.eopt, where the in-
equality can be substantial for small samples. Unlessn is
quite small, it is not unreasonable to assume thatem,n pre-
cisely estimates ofem , since estimation ofmY does not re-
quire a large sample. Under this assumption, if we setem,n
5em in Eq. ~7! and take expectations, we obtain

E@un#'
em2E@en#

em

. ~8!

SinceE@en#.eopt, Eqs. ~6! and ~8! yield E@un#,uopt, and
un is a low-biased estimator ofuopt.

For a constrained optimization,en is replaced byecon,n to
obtain ucon,n . In analogy to Eq.~1!, if there is a sufficient
number of microarrays, then

ucon,n'uopt-con<uopt'un . ~9!

As the number of replicates increases, the approximations
better. In our low-replication environment, it is not uncom
mon to haveE@ucon,n#.E@un#.

We need data to estimateun , as well as design predictors
This, too, is problematic due to limited replicates. For unco
strained predictors~and analogously for constrained predi
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General Nonlinear Framework for Analysis of Gene Interaction
tors!, one can use theresubstitutionestimate,ün . For resub-
stitution, all of the sample data are used to train~design! the
best predictor, estimates ofem,n and en are obtained by ap-
plying the thresholded estimated mean and the designed pr
dictor to all of the training data, andün is then computed by
putting these estimates into Eq.~7!. ün estimatesun , and
thereby serves as an estimator ofuopt. The resubstitution es-
timate can be expected to be optimistic, meaning it is biase
high ~Sec. 6!.

A different approach is to split the data into training and
test data, thereby producingcross validation. A predictor is
designed from the training data, estimates ofem,n anden are
obtained from the test data, and an estimate ofun is computed
by putting the error estimates into Eq.~7!. Since this error
depends on the split, the procedure is repeated a number
times and an estimate,ûn , is obtained by averaging. For ran-
dom sampling, the estimates ofem,n anden are unbiased, and
therefore the quotient of Eq.~7! will be essentially~close to
being! unbiased as an estimator ofun ~Sec. 6!. Sinceun is a
pessimistic~low-biased! estimator ofuopt, ûn is a pessimistic
estimator ofuopt.

Another issue is the number of predictor variables. Form
and r predictor variables,m,r , if eopt(m) denotes the error
for the m-variable predictor, theneopt(r )<eopt(m). The pre-
diction error decreases with an increasing number of vari
ables. Hence,uopt(r )>uopt(m). However, with an increasing
number of variables comes an increase in the cost of estima
tion ~the difference between the errors of the designed an
optimal predictors!. Intuitively, the information added by ex-
panding the number of predictor variables becomes ever mor
redundant, thereby lessening the incremental predictive cap
bility being added, whereas the inherent statistical variability
in the new variables increases the cost~error! of design. Let-
ting dn(m)5E@en(m)#2eopt(m), we havedn(m)<dn(r ),
and it may happen thaten(r ).en(m) and un(r ),un(m).
Since uopt(r )>uopt(m), we choose the maximum between
ûn(r ) and ûn(m) as our estimator ofuopt(r ).

Cross validation is beneficial becauseûn gives a conserva-
tive estimate ofuopt. Thus, we do not obtain an overly opti-
mistic view of the determination. On the other hand, training
and testing on the same data provide large computational sa
ings. This is important when searching over large combina
tions of predictor and target genes. Our current biological goa
is comparative: we are interested in comparing coefficients o
determination to find sets that appear significantly determina
tive of a particular target gene. In one case we are comparin
high-biased values; in another, we are comparing low-biase
values. If it happens that resubstitution and cross validation
give similar comparative determinations, then using the resub
stitution estimator can be practically beneficial. We will ex-
perimentally consider this question in Sec. 4.

4 Experimental Results
Tests of the ability of both thefull-logic ~unconstrained! pre-
dictor and the perceptron to detect associations based o
changes in transcription level have been performed in the con
text of responsiveness to genotoxic stresses. As a result of
microarray study surveying transcription of 1238 genes dur
ing the response of a myeloid line to ionizing radiation,18 30
-

f

-

-

-

-

n
-
a

genes not previously known to participate in response to
were found to be responsive. To further characterize the
sponsiveness of these genes to genotoxic stresses, the re
siveness of a subset of 9 of them was examined by blot as
in 12 cell lines stimulated with ionizing radiation, a chemic
mutagen@methyl methane sulfonate~MMS!#, or ultraviolet
~UV! radiation. The cell lines were chosen so that a samp
of both p53 proficient andp53 deficient cells would be as
sayed.

As a blind control, expression patterns for two fictitiou
genes were created. Rules were made for the fictitious ge
depending on other gene states in the set, and the degre
concordance of the observations to the rules were var
AHA has the rule: up regulated ifp53 up regulated, down
regulated if RCH1 andp53 down regulated. Full concordanc
with the rule would produce 15 instances of up regulation a
5 instances of down regulation. The data set generated
AHA includes 13 of the 15 up regulations and all 5 dow
regulations. OHO has the rule: up regulated if MDM2 u
regulated and RCH1 down regulated, and down regulate
p53 down regulated and REL-B up regulated. Full conc
dance with this rule would produce four instances of up re
lation and five instances of down regulation. The data
generated for OHO has the four expected up regulations
seven unpredicted up regulations, and only two of the fi
predicted down regulations. The ternary data of the survey
given in Table 1, where the conditions IR, MMS, and U
have the values 1 or 0, depending on whether the conditio
or is not in effect.

The genes in the survey are not uniformly regulated in
various cell types. All genes showed up or down regulation
at least one cell type, however the numbers of changes re
tered across the lines are quite variant. Such a varied resp
reflects the different ways in which different cells respond
the same external stimuli based on their own internal sta
and is therefore a useful test set for the predictors. Since
dictors operate by rules relating changes in one gene w
changes in others, it is necessary that a target gene chan
significant number of times in the observation set to ge
meaningful prediction. We limit the target genes to those
hibiting at least 4 changes in the set of 30 observatio
thereby eliminating MBP1 and SSAT as targets.

For the test genes~AHA and OHO!, the designed predic
tors identified both thep53 and RCH1 components of th
transcription rule set for AHA. For instance, using the perce
tron and data splitting gives 0.785 as the~low-biased! esti-
mate of the coefficient of determination. Since many rule v
lations were introduced into the data set for the OHO gene
was expected that the coefficient of determination would
be high when using the predictors MDM2, RCH1,p53, and
REL-B. This expectation was met.

For subsequent illustrations, determination results will
presented as arrow plots, with the target gene at the right
the chained predictors plotted to the left. The determinat
achieved by adjoining a predictor gene is placed on the ar
preceding it. For instance, in Figure 4, predictor 1 achie
determinationu1 for predicting the target gene, using predi
tors 1 and 2 together achieves determinationu2 , and using
predictors 1, 2, and 3 together achieves determinationu3 .

In cases where existing biological information provides e
pectations, the predictions conform to these expectations.
Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4 415
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Table 1 Ternary expression data.
-
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of
biological expectation is that MDM2 is incompletely, but
strongly, predicted byp53. As shown in Figure 5~a!, using the
perceptron and data splitting, this expectation is met. Addi
tions of further genes top53 do not increase the accuracy of

Fig. 4 Determination diagram (template).
of Biomedical Optics d October 2000 d Vol. 5 No. 4
the prediction. Similarly, as it is known thatp53 is influential,
but not determinative of the up regulation of bothp21 and
MDM2, some level of prediction ofp53 should be possible by
a combination of these two genes. This expectation is a
met @Figure 5~b!#. Moreover, asp21 shows bothp53 depen-
dent andp53 independent regulation in response to genom
damage,19 it was expected that thep53 component would not
be recognized by the algorithm.p53 was not selected for the
predictor. The algorithm chose the somewhat similar patt
of expression exhibited by ATF3, with some supplement
information from the MDM2 pattern as the best predictor
p21 @Figure 5~c!#. The prediction carries little significance.
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Fig. 5 Determination diagrams where there is consistency with biological information.
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Among the newly found, IR responsive genes, FRA1,
ATF3, REL-B, RCH1, PC1, IAP-1, and MBP-1, a set of re-
lationships is seen that appears to link the behaviors o
REL-B, RCH1, PC-1, MBP-1, BCL3, IAP-1, and SSAT. A
set of perceptron and full-logic prediction trees for REL-B,
PC-1, RCH1, and IAP-1 are shown in Figure 6. Both full-
logic and perceptron predictors find a variety of apparently
significant similarities of expression behavior within this set.
Some of these genes also show a high degree of predictabili
based solely on exposure to ionizing radiation. When thes
genes are viewed with an eye to IR responsiveness, it be
comes apparent that they share an overall trend to show e
pression level changes in response to IR rather than to UV o
MMS. Even though MBP1 and SSAT only responded to IR at
the very low rate of 17% of the possible chances, they re
sponded only to this stimulus, and not to the other genotoxic
stimuli, and were thus associated with other genes showin
similarly high preference. Here we have only briefly outlined
the manner in which the prediction methodology is consisten
with existing biological knowledge and has the power to find
new, potentially significant relations. In another paper, we
have gone into much greater biological detail for the same
genotoxic stress data using the perceptron and resubstitutio
estimation of the coefficient of determination.9

Using data splitting, we illustrate the error relation be-
tween the full-logic and perceptron predictors. The estimated
determinations of the best full-logic and perceptron predictors
of BCL3 in terms of IAP-1, PC-1, and SSAT areûn50.334
y

-
-
r

n

and ûcon,n50.461, respectively. Since the coefficient of th
full-logic predictor exceeds the coefficient of the perceptro
the optimal full-logic predictor has determination greater th
0.461. We cannot derive this directly from the data, only fro
the fact thateopt<eopt-con. In fact, it could be that the optima
full-logic predictor is a perceptron, but this cannot be sho
from the limited data we have.

Now consider prediction of BCL3 in terms of RCH1
SSAT, andp21. The best full-logic and perceptron predicto
have estimated determinationsûn50.652and ûcon,n50.431,
respectively. Constraining prediction to a perceptron unde
timates the degree to which BCL3 can be predicted by RC
SSAT, andp21. In fact, the true coefficient of determinatio
for the optimal full-logic predictor is likely to be significantly
greater than 0.652. Moreover, performance of the optim
full-logic predictor surely exceeds that of the optimal perce
tron by more than the differential 0.221, but this cannot
quantified from the data. We can, however, conclude w
confidence that, to the degree that a perceptron approxim
linear prediction, the substantial superior performance of
full-logic predictor shows that the relation among RCH
SSAT, and p21 ~as predictors! and BCL3 ~as target! is
strongly nonlinear.

The different ways in which full-logic and perceptron pr
dictors operate to find relationships can be illustrated by
amining the prediction each makes for the target gene BC
In Figure 7, the upper pair of determination trees represe
Fig. 6 Perceptronv (left) and full-logic (right) prediction trees.
Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4 417
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Fig. 7 Interchanging the best full-logic (right) and perceptron (left) predictors.
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the optimal gene sets chosen by the perceptron~left! and full-
logic ~right! predictors. The lower pair shows the reduced
determination achieved when the genes optimum for the full
logic predictor are used by the perceptron, and vice versa
Differences in choices made by predictors result from the dif-
ferent computation constraints they impose on input measure
ments.

We return to the issue of comparative determination using
the resubstitution estimatorün as opposed to the cross-
validation estimatorûn . Due to the high and low biases ofün

and ûn , respectively, as estimators ofuopt, the cutoffs for
determination values considered meaningful will differ; nev-
ertheless, the orders of the coefficients’ magnitudes may sti
be consistent. Such consistency has useful practical cons
quences. Under present technological and cost constraints, e
periments typically have less than 100 replicates~microar-
rays!. Hence, the statistics being computed from the sampl
data are likely to be imprecise estimators of the correspondin
population parameters. The coefficient of determination is be
ing used mainly for comparative purposes to sift out poten
tially strong control relations among genes and external con
ditions. Consequently, overly optimistic estimates are no
necessarily detrimental, nor are overly pessimistic estimate
If resubstitution and cross-validation error estimation yield
coefficients that rank predictor-target sets in much the sam
order, then either can be used for comparative purposes with
out detriment, and the significantly faster computation of re-
substitution estimates becomes a deciding factor. Only consis
tency among large coefficients is important, because thes
indicate potentially significant biological control relations.

Using two predictors per target, we have ranked the coef
ficients by using both methods and compare the orderings. Fo
each target gene, a graph has been constructed withx values
being the determination ranks~in order! for ün and they value
for x being the determination rank forûn corresponding to the
predictor pair having rankx. We have also plotted the graph
of the coefficients versus the training-estimation ranks. The
graphs for PC-1 are shown in Figure 8. If the orderings are
consistent, then the(x,y) values should lie relatively close to
the 45° line through the origin. Quantification of this condi-
tion is problematic due to the large number of rank ties forûn
that result from the maximization done during estimation.
Nonetheless, we have noticed that for ranks corresponding t
ün>0.5 there is strong consistency. This consistency can b
experimentally quantified by counting the number of points
lying in the box determined by theün rank,x0.5, correspond-
418 Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4
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ing to 0.5. In order not to break strings of ties forûn , if
necessary, the box is expanded a minimal amount so th
contains a contiguous string beginning at or beforex0.5. We
consider the points in the box to be consistently estimated
the two methods. Those above and to the right of the b
correspond to too low or too high aûn ranking corresponding
to ün , respectively. We leta, b, and g be the counts in,
above, and to the right of the box, respectively. Four ge
have a sufficient number of predictor pairs withün>0.5 to
make the numbers meaningful. For REL-B,x0.5538, a533,
b55, andg55; for IAP-1, x0.5516, a515, b51, andg51;
for PC-1, x0.5533, a532, b51, and g55; and for AHA,
x0.5514, a514, b50, andg50. Even when there are point
outside the box, they tend to be close to the box. Moreov
were we to letx525 be the box cutoff for REL-B, thenb50
and g51. While the last values support the notion th
training-data estimates can be used for comparison purpo
the values forx0.5 are more significant because they repres
the manner in which one might look for significant determ
nation by selecting a determination cutoff. Choosing a de
mination value greater than 0.5 enhances the consistency
tween the two orderings. For instance, for REL-B andx0.6
526, a526, b50, andg50.

5 Software
We briefly describe the determination software that has b
developed~and continues to be developed! to process mi-
croarray data and provide tabular and graphical tools to as
analysis. While the data set in this paper consists of relativ
few genes, the interactive software can be used in a work
tion environment for gene sets approaching 1000 genes. M
genes can be used as predictors in a supercomputing env
ment. In an experiment involving a collection of microarray

Fig. 8 Comparison of determination ranks.
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Fig. 9 Determination graph for increasing number of predictor variables.
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each might contain up to 8000 genes, but only those gene
whose expression levels change some minimal number o
times across the experiment are considered. Those that chan
only a few times provide very little information and do not
yield meaningful determination coefficients. A consequence
of this information requirement is that far fewer than the full
8000 genes are likely to be considered.

For a given target gene, the software computes the dete
mination coefficients for all possible combinations of one,
two, and three predictors. With a further restriction on the
number of genes, it can also handle four predictors. Since w
are computing a biased sample coefficient, given the mode
number of microarrays we typically have for an experiment, it
is prudent not to use too many predictor variables. The deter
mination coefficients are computed offline and stored in table
for a researcher to access. For more than a single variabl
these tables are quite long. Therefore a number of tools hav
been included in the software to facilitate online analysis.

• The user can specify a range in each table, from the
predictor set with thenth highest determination to the set
with the mth highest,n,m.

• Once a range is specified, the table can be scrolle
downward.

• If one is interested in one or more genes being required
for determination, these can be specified and a new tabl
displayed with this requirement.

• If a gene, or gene set, has high determination, then ad
joining further genes to the set can only increase the
determination; therefore one can limit the number of
s
f
e

-

t

-

,
e

-

times any gene or gene set appears in the table, inclu
the possibility of omitting any combination containing
particular gene.

• Of special interest are situations in which adjoining
gene to a gene set yields a significant increase in de
mination; and therefore one can choose a thresholdd and
display only those predictor sets for which there is
least ad increase in determination over the determin
tion for any subset for which the gene has been omitt

• One can delete from the table any gene whose exp
sion levels did not change some minimal number
times across the experiments.

• At any time, the software can be queried for a spec
target and predictor set.

Various graphical tools are included. For any predictor
and target, a graph can be plotted online to show the incre
in determination as the predictor set grows. The order of
clusion of the predictor genes can be specified, or the gr
can be automatically displayed so that the best single pre
tor in the gene set is shown first and, given that gene, the
two are shown next, and so on. Figure 9 shows the graph
the training-data determination estimate of AHA by predic
genes PC-1, RCH1, andp53 where the numbering refers t
the gene listing in Table 1.

Rather than simply show the performance of a single p
dictor set for a given target gene, the software allows visu
ization for various predictor sets for a given target gene, or
more than a single target gene. Figure 10~a! displays perfor-
Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4 419
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Fig. 10 Multiple predictor set visualization. (a) After redundancy removed, (b) threshold specified, (c) a predictor gene specified, (d) multiple target
genes.
e
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on
mance bars for all possible predictor sets for the target gen
ATF3 after redundancy has been removed. Redundancy o
curs because adjoining a gene to a predictor set may not im
prove the coefficient of determination. This redundancy need
not be visualized. One may also require that a particular gene
420 Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4
-
-

,

or combination of genes, be included in the predictor set. T
situation is shown in Figure 10~b!, where SSAT is required to
be among the predictors. One may also simplify the visu
ization by specifying a threshold coefficient of determinati
that must be exceeded, as in Figure 10~c! where the threshold
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General Nonlinear Framework for Analysis of Gene Interaction
is 0.25. If a user finds an interesting predictor set, then mor
detailed information, such as gene clone-id, can be pulle
from the database. Visualization can be done for more than
single target gene. Figure 10~d! shows a display for multiple
target genes in which the determination threshold 0.25 mus
be exceeded.

For three predictors, a cubical graph can be generated on
line that displays the data for each predictor set. Figure 11
shows the data graph for the gene set of Figure 9. For thre
genes,g1 , g2 , and g3 , each microarray gives three values
that appear as a ternary-valued vector(x1 ,x2 ,x3). At each
spatial point of the graph~having coordinates21, 0, or 1! are
plotted spheres whose sizes indicate the relative number o
times that a particular coordinate triple was associated with
the target value21 ~green sphere!, 0 ~yellow sphere!, and 1
~red sphere! in the data. This graph shows the degree to which
the target values tend to separate the predictor vectors. Th
actual counts are also displayed on the graph, along with th
fraction of time a predictor vector appears among the experi
mental data. The graph can be rotated and viewed from dif
ferent angles.

Graphically, a ternary perceptron separates the spatia
points in the graph by two planes so that, once designed, all o
the points in the same region~among the three regions! have
the same perceptron value. For any three-gene predictor se
the software plots the optimal perceptron planes and display
the points within the appropriate regions as green, yellow, o
red, according to the perceptron outputs21, 0, and 1, respec-
tively. Figure 12 shows a graphical display of the perceptron
corresponding to Figure 9 and the data graph of Figure 11
The display can be rotated.

Another facility shows a logical circuit implementation of
the optimal predictor for a given gene set. We use a
comparator-based logic architecture based on the signal re
resentation theory of mathematical morphology.20 This archi-
tecture is straightforward and reflects the decision procedure
inherent in a logical table. The expression levels of the pre
dictor genes are input in parallel into two banks of compara
tors, each of which is an integrated circuit of logic gates and
each being denoted by a triangle having two terminals. On
terminal receives the input(x1 ,x2 ,x3) and the other has a
fixed vector input(t1 ,t2 ,t3). If (t1 ,t2 ,t3) is at the upper
terminal, then the comparator outputs 1 ifx1<t1 , x2<t2 , and
x3<t3 ; otherwise, it outputs 0. If(t1 ,t2 ,t3) is at the lower
terminal, then the comparator outputs 1 ifx1>t1 , x2>t2 , and
x3>t3 ; otherwise, it outputs 0. The outputs of each compara
tor pair enter an AND gate that outputs 1 if and only if the
inputs are between the upper and lower bounds of the com
parator pair. The AND outputs in the upper bank enter an OR
gate, as do the AND outputs of the lower bank. The outputs o
the OR gates enter a multiplexer. There are three possibilities
~1! both OR gates output 0, in which case the multiplexer~and
hence the circuit! outputs 0;~2! the upper OR gate outputs 1
and the lower OR gate outputs 0, in which case the multi-
plexer outputs21; ~3! the upper OR gate outputs 0 and the
lower OR gate outputs 1, in which case the multiplexer out-
puts 1. Figure 13 shows the logic implementation for the per
ceptron of Figure 12.
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6 Statistical Considerations
There are many statistical issues related to prediction in
context of microarrays. We have previously emphasized
need for employing a small number of predictor variables a
the comparative manner in which the estimated coefficie
are being used. Here in Sec. 6 we point out some gen
relations between the expected error of a trained predictor
the error of the optimal predictor, and between the error e
mators and the errors they are estimating. We have postpo
discussion of these issues until this point so as not to break
flow of the paper for those interested mainly in methodolo
and application software.

Figure 2 is generic but can be quantified for various p
diction settings. One case is directly applicable here. Wh
the predictors are gene expression levels and the target
condition, IR, MMS, or UV, the output of the predictor i
binary and the input is ternary. In this case,

E@en#<eopt1
3m

en
1A 3m

2~n11!
, ~10!

wheree is the base of the natural logarithm.14 The expectation
of the error for the designed filter is relative to all possib
samples from the joint probability distribution of the predi
tors and target. The bound requires no distributional assu
tions and therefore may be loose for specific cases; none
less, it indicates the exponential need for more replicates am
increases. The need can be cut if the input data is only bin
with 3m being replaced by2m in the bound.

The resubstitution estimator is a low-biased estimator
en , E@ ën#<E@en#,21 and a low-biased estimator of the erro
of the optimal predictor,E@ ën#<eopt.

22 The problem is exac-
erbated if we employ a large number of variables. This can
seen by considering the MSE of the resubstitution estima
of en . An upper bound for this error is given by

E@ u ën2enu2#<
6

n
3m, ~11!

where 3m is replaced by2m for binary input data.14 Once
again we see the exponential relationship between the num
of replicates and the number of predictor variables.

Assuming random sampling, data splitting provides an
biased estimatoren : E@ ên#5E@en#. On average,ên estimates
the mean ofen , and on average it provides a conservati
~pessimistic! estimate ofeopt. For largen the MSE forên as
an estimator ofen is small, but not for smalln. The following
distribution-free bound indicates the dependence onn,14

E@ u ên2enu2#<
116e21

n
1

6

Ap~n21!
. ~12!

For small n, ên provides imprecise estimation ofen . The
randomized data-splitting method we use provides a pre
estimator of the error of predictors based on 20-sample
signed predictors within the overall 30 samples. However,
precision of that estimator relative to the population of
possible similar stress-related microarrays depends on the
gree to which the full sample reflects the entire population
Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4 421
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Fig. 11 Data graph.
-

o-
The preceding statistical considerations indirectly apply to
the coefficient of determination. The difficulty is that denomi-
nator in Eq. ~7! is a sample-dependent random variable.
Nonetheless, assuming thatmY can be precisely estimated
from a relatively small sample, approximation is obtained by
422 Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4
setting em,n5em . Assuming the validity of the approxima
tion, we obtain the following inequalities:E@un#<uopt,
E@ ün#>E@un#, E@ ün#>uopt, and E@ ûn#5E@un#.17 Equa-
tions ~10!–~12! can be rewritten to obtain bounds for the c
efficient of determination.
Fig. 12 Graphical display of perceptron.
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General Nonlinear Framework for Analysis of Gene Interaction
7 Conclusion
New methods for simultaneously measuring expression leve
of large numbers of genes motivate application of nonlinea
multivariate expression analysis. This paper has demonstrat
that multivariate nonlinear predictors~both unconstrained and
constrained! can ferret out known and constructed relation-
ships, and disclose common modes of transcriptional activity
Significant nonlinear prediction can be used to indicate poten
tial pathway connections and such purely statistical relation
ships can be used to guide further investigations. The metho
has the flexibility to allow predictions to be formulated based
not only on expression data, but also on the conditional func
tionality of genes and on applied external stimuli. Current
technological and cost restrictions limit the number of mi-
croarray replicates; nonetheless, the degree of determinatio
between predictor gene sets and target genes can be used
comparative manner to discover potentially interesting contro
relations among the vast collection of all possible relation
ships.

To employ the proposed determination methodology fo
large classes of genes requires massively parallel comput
tional capability. We are in the process of developing both the
requisite hardware and software. Currently we can process a
possible predictor sets containing three or less genes fro
among 600 genes, and can do this for 60 targets in less than
week. Work is continuing on computation, database manage
ment, software, and visualization tools. For the day when hun
dreds or thousands of replicates will be available, intelligen
algorithms are being developed to allow consideration o

Fig. 13 Logic circuitry for perceptron.
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more than three predictor genes without searching among
possible relationships. In addition, further research is nec
sary to develop ways to determine suitably constrained p
dictors so as not to miss multivariate gene relationships du
either lack of data~insufficient constraint! or lack of flexibil-
ity ~too much constraint!.

Appendix: Perceptron Training
Here in the Appendix we describe the design procedure
the ternary perceptron for the predictor expressio
X1 ,X2 , . . . ,Xm and target expressionY, and we explain error
estimation. Letting X5(X1 ,X2 , . . . ,Xm) be the vector
formed by the predictor variables, for the purpose of train
we take a randomly selected sequen
(X1,Y1),(X2,Y2), . . . , of training data~predictor vectors and
target values! from the data. Due to a small data set, t
training data are recycled using random reordering on e
cycle. LettingA5(a1 ,a2 , . . . ,an ,b) be the perceptron coef
ficient vector, training involves positing an initial vectorA0 ,
applying A0 to the predictor dataX1 to obtain an estimate
Ypred,1 of Y, and using the error of this estimation to form
transition ofA0 to A1 . Iterating this estimation and transition
ing based on the training data yields a sequence of coeffic
vectorsA0→A1→A2→ . . . . Training is complete when the
prediction error on the training data is zero or the change iA
is insignificant. Predictor performance is then tested on
separate set of data pairs,(X,Y). For the purpose of training
we use the absolute erroruYpred2Yu.

Initialization of A can be either random or based on t
training data. Using the methodology of linear prediction, w
can initialize A based on empirical estimates of the cros
covariance vectorC betweenX andY and the autocorrelation
matrix R of V5(1,X1 ,X2 , . . . ,Xm). In this way, A0
5R1C. From our experiments, prediction performance is n
very sensitive to initialization; however, the initializatio
R1C sometimes yields better prediction and requires few
iterations to converge. Transitioning ofA can be done in two
ways ~as we now describe!.

A can be transitioned following each sample, meaning t
A is transitioned sequentially based on the prediction error
each training sample. After all samples have been used o
they are recycled in random order. Randomizing the train
data before each cycle helps to mitigate any systematic b

The training algorithm is characterized by the update

A~new!5A~old!1DA, ~A1!

where the incrementDA is the transition size. Using the do
~•! product to represent the sum in Eq.~2! and inputting the
next training sample(X,Y), we obtain the estimateYpred
5T@A~old!•V# based on the current coefficient vectorA~old!.
The training error is defined by

e5~A~old!•V2Y!uYpred2Yu. ~A2!

A~old!•V2Y determines the magnitude~and sign! of the tran-
sition DA and uYpred2Yu gives the prediction error~relative
to the training algorithm!. Note that

1. e.0 implies that we need to decreaseA~old!•V2Y by
transitioningA;
Journal of Biomedical Optics d October 2000 d Vol. 5 No. 4 423
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2. e,0 implies that we need to increaseA~old!•V2Y by
transitioningA;

3. e50 implies that there is no error and we do not tran-
sition A.

We use the perceptron transitionDai5a i(Y2Ypred)Xi ,
where 0,a i<1 are gain factors. The gain factors can be
useful for proper training, although in our experiments predic-
tion performance was not very sensitive to this choice.

The training algorithm for transitioning after each sample
takes the following form: ~1! initialize A; ~2! feed in
X1,X2, . . . , is some sequence, transitioningA at each step;
~3! repeat step~2! using randomized recycling of inputs until
a stopping criterion is reached. IfA does not change during a
cycle, this implies convergence of the training procedure~al-
though it does not mean that the prediction error is 0 for eac
training sample!. We can use any of the following stopping
criteria: A0→A1→A2→ . . . converges; a fixed number of
iterations is chosen prior to training; or some minimum pre-
diction error tolerance is reached.

Rather than transition after each sample, we may updat
only after the completion of a cycle of the training data. Un-
der this protocol,e and Dai are computed following each
sample as before; however,A is not transitioned after each
sample. Instead, it is updated at the end of each cycle, wit
DA being the sum of the stepwise increments during the
cycle. Similar comments regarding the gain factors and stop
ping criteria apply.

Prior to applying the algorithm, it was extensively tested
on simulated data generated by a mathematical model bas
on a thresholded linear operator corrupted by noise. Based o
our experimental results, we implemented the algorithm on
the microarray data using the initializationA05R1C and
transitioningA at the end of each cycle.

For data splitting, the perceptron is trained on the 20 train
ing data sets and the errors of both the trained perceptron an
the initialized perceptron are computed for the training data
The one that performs best on the training data is taken as th
designed perceptron and is then applied to the 10 test sets
obtain a test error for the designed perceptron. This is re
peated 256 times and the estimated error is taken as the ave
age of these errors. Because of the small amount of test da
and the stochastic nature of the training algorithm, the MSE
of the designed predictor may be greater than the MSE of th
thresholded mean. Since this would yield a negative coeffi
cient of determination, which is impossible, the estimate is se
to 0. Moreover, we apply the maximization discussed in the
paper: ifm,r and the estimate gives a greater coefficient for
m variables, then we take the maximum betweenûn(r ) and
ûn(m) as the estimate ofûn(r ).
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