Medical Imaging 2023

Physics of Medical Imaging

Lifeng Yu Rebecca Fahrig John M. Sabol Editors

19–23 February 2023 San Diego, California, United States

Sponsored by SPIE

Cosponsored by
Siemens Healthineers
Konica Minolta Healthcare

Cooperating Organizations
American Association of Physicists in Medicine (United States)
Radiological Society of North America
World Molecular Imaging Society
Society for Imaging Informatics in Medicine (United States)
International Foundation for Computer Assisted Radiology and Surgery
Medical Image Perception Society (United States)

Published by SPIE

Volume 12463

Part One of Two Parts

Proceedings of SPIE, 1605-7422, V. 12463

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

Medical Imaging 2023: Physics of Medical Imaging, edited by Lifeng Yu, Rebecca Fahrig, John M. Sabol, Proc. of SPIE Vol. 12463, 1246301 © 2023 SPIE · 1605-7422 · doi: 10.1117/12.2682161

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Medical Imaging 2023: Physics of Medical Imaging*, edited by Lifeng Yu, Rebecca Fahrig, John M. Sabol, Proc. of SPIE 12463, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 1605-7422

ISSN: 2410-9045 (electronic)

ISBN: 9781510660311

ISBN: 9781510660328 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)

SPIE.org

Copyright © 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

xiii Conference Committee

Part One

	MONDAY MORNING KEYNOTES
12463 02	State of the art in the task-based assessment of medical imaging systems (Keynote Paper) [12463-501]
SESSION 1	PHOTON-COUNTING COMPUTED TOMOGRAPHY (PCCT)
12463 03	A systematic assessment of photon-counting CT for bone mineral density and microarchitecture quantifications [12463-1]
12463 04	Noise2Noise for denoising photon counting CT images: generating training data from existing scans [12463-2]
12463 05	Photon counting spectral computed tomography in diagnosis of joint conditions using novel bismuth contrast agent [12463-3]
12463 07	Effects of bowtie scatter on material decomposition in photon-counting CT [12463-5]
SESSION 2	TOMOSYNTHESIS AND PHASE CONTRAST
12463 08	Feasibility of dynamic lung tomosynthesis using stationary x-ray source arrays [12463-6]
12463 09	Multimodal single-shot x-ray phase-contrast imaging using a high-resolution micropillar-based grating [12463-8]
12463 OA	Simulation study of a novel ZnO nanowire cold cathode flat-panel x-ray source using EGSnrc for Talbot-Lau type grating interferometry [12463-9]
SESSION 3	X-RAY DETECTORS
12463 OC	A study of crosstalk effect in pixelated photon counting detectors and impact to system imaging performance [12463-11]
12463 OE	Comparison of energy bin compression strategies using a prototype silicon photon counting CT detector [12463-13]

12463 OF	Charge sharing correction for photon counting detectors with coincidence counters [12463-14]
12463 0G	Photon-count detector model using local parameters for pixel-to-pixel deviations [12463-15]
12463 OH	Charge collection efficiency of CdTe detectors: impact of charge collection time and polarisation $[12463-17]$
SESSION 4	MAMMOGRAPHY
12463 OI	4D digital breast phantom for contrast-enhanced imaging [12463-18]
12463 OJ	Theoretical basis and experimental validation of harmonic coherence-based ultrasound imaging for breast mass diagnosis [12463-20]
12463 OK	A new approach for the objective assessment of breast imaging technologies: mass classification tasks [12463-21]
12463 OL	Impact of cone-beam CT noise correlation on self-supervised denoising strategies for low dose breast CT imaging [12463-22]
SESSION 5	IMAGING FOR THERAPY
12463 OM	Real-time single frame tomosynthesis: prototype and radiotherapy applications [12463-23]
12463 ON	Predicting the dose distribution of multi-lesion lung stereotactic ablative radiotherapy plans using generative adversarial networks [12463-24]
12463 00	A histotripsy targeting approach using a mobile C-arm [12463-25]
12463 OP	Spectral CT thermometry with improved temperature sensitivity for image-guided thermal ablation [12463-26]
SESSION 6	NEW SYSTEMS AND MULTI-SOURCE COMPUTED TOMOGRAPHY
12463 0Q	Data driven methods for ultrasound computed tomography [12463-27]
12463 OS	Preliminary investigation of image reconstruction from data over reduced angular range in spectral-spatial electron paramagnetic resonance imaging [12463-29]
12463 OT	Spectral micro-CT imaging of multiple K-edge elements using GaAs and CdTe photon counting detectors [12463-31]
12463 OU	Multiple focal spots for high resolution CT [12463-32]

12463 OV	Adaptive kernel-based scatter correction for multi-source stationary CT with non-circular geometry [12463-33]
12463 OW	Preliminary evaluation of a multi-source CBCT design [12463-34]
SESSION 7	FLUOROSCOPIC AND RADIOGRAPHIC IMAGING
12463 0X	Approaches for three material decomposition using a triple-layer flat-panel detector [12463-35]
12463 OY	Three-material decomposition using a dual-layer flat panel detector in the presence of soft tissue motion [12463-36]
12463 OZ	Use of high-speed angiography HSA-derived boundary conditions and Physics Informed Neural Networks (PINNs) for comprehensive estimation of neurovascular hemodynamics [12463-37]
12463 10	Integration of single-shot quantitative x-ray imaging on a C-arm system for static and dynamic phantom studies [12463-38]
SESSION 8	CONE BEAM COMPUTED TOMOGRAPHY (CBCT)
12463 12	Cone-beam CT trajectory optimization for metal artifact avoidance using ellipsoidal object parameterizations [12463-40]
12463 13	Cone-beam CT with a noncircular (sine-on-sphere) orbit: imaging performance of a clinical system for image-guided interventions [12463-41]
12463 14	Multi-stage Adaptive Spline Autofocus (MASA) with a learned metric for deformable motion compensation in interventional cone-beam CT [12463-42]
12463 15	Quantitative dual-energy imaging of bone marrow edema using multi-source cone-beam CT with model-based decomposition [12463-43]
12463 17	Multi-constrained multi-material decomposition for dual energy CBCT [12463-45]
SESSION 9	BREAST TOMOGRAPHY AND DIGITAL TRIALS
12463 18	A scatter correction method for contrast-enhanced digital breast tomosynthesis with a dual-layer detector [12463-46]
12463 19	Deep CNN task-based image quality assessment: application to digital breast tomosynthesis reconstruction and denoising [12463-47]
12463 1A	Design of an in silico imaging trial with growing breast cancer lesions: comparison between DM and DBT detectability [12463-49]

12463 1B	Development and application of a virtual imaging trial framework for airway quantifications via CT [12463-50]
12463 1C	A complete procedure to prepare virtual clinical trials in digital breast tomosynthesis [12463-51]
12463 1D	A dense search challenge phantom fabricated with pixel-based 3D printing for precise detectability assessment [12463-52]
SESSION 10	PET/SPECT RECONSTRUCTION
12463 1E	Development and task-based evaluation of a scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT (Physics of Medical Imaging Student Paper Award) [12463-53]
12463 1F	Super-resolution reconstruction of γ -ray CT images for PET-enabled dual-energy CT imaging [12463-54]
12463 1G	MR guided PET image denoising based on denoising diffusion probabilistic model and data consistency constraint [12463-55]
12463 1H	Optimal dynamic step and shoot temporal design for quantitative multi-organ dynamic PET imaging [12463-56]
12463 11	Memory-efficient self-supervised learning of null space projection operators [12463-57]
SESSION 11	CT NOISE REDUCTION AND IMAGE QUALITY & AI/ML
12463 1J	Contrast- and noise-dependent spatial resolution measurement for deep convolutional neural network-based noise reduction in CT using patient data [12463-58]
12463 1K	Patient-specific uncertainty and bias quantification of non-transparent convolutional neural network model through knowledge distillation and Bayesian deep learning [12463-64]
12463 1L	Unsupervised learning of robust models for cardiac and photon-counting x-ray CT denoising [12463-60]
12463 1M	Task-driven CT image quality optimization for low-contrast lesion detectability with tunable neural networks [12463-61]
12463 1N	Addressing the challenge of CT number bias in low-dose photon counting CT without access to raw detector count data [12463-62]
12463 10	Bench testing performance of deep learning-based CT image denoising methods: influence of object background on image sharpness and noise texture [12463-63]

SESSION 12	COMPUTED TOMOGRAPHY IMAGE RECONSTRUCTION AND AI/ML
12463 1P	Empirical unbiased zero-count correction in photon counting CT [12463-59]
12463 1Q	Harmonizing CT images via physics-based deep neural networks [12463-66]
12463 1R	Cardiac phase estimation using deep learning analysis of pulsed-mode projections: towards autonomous cardiac CT imaging [12463-67]
12463 1\$	MB-DECTNet: a model-based unrolled network for accurate 3D DECT reconstruction [12463-69]
	POSTER SESSION
12463 1T	ListmodeCNN: deep learning-based PET list-mode image reconstruction [12463-70]
12463 1U	Experimental study for discrimination between iodine and sucrose using photon counting CT assuming malignant/benign tumor [12463-71]
12463 1V	Generation of training dataset for deep-learning noise reduction [12463-72]
12463 1W	PET image reconstruction with parallax correction based on a distance-driven deep neural network [12463-73]
12463 1Y	Unpaired learning with a data-dependent noise-generative model for low-dose CT sinogram restoration [12463-75]
12463 1Z	Development of a spatial-spectral phantom for evaluation of vascular CT imaging [12463-76]
12463 20	First-generation clinical dual-source photon-counting CT: quantitative and ultra-high-resolution spectral imaging [12463-77]
12463 21	Reducing dose in renal perfusion CT scans: the effects on quantitative imaging features for patients of different sizes [12463-78]
12463 22	Annual medical physics compliance testing of a photon counting CT scanner in comparison to other state-of-the-art scanners [12463-79]
12463 23	Enhancing bare metal stent visibility using multi-energy subtraction x-ray imaging [12463-82]
12463 24	A flexible metasurface to improve knee MRI [12463-83]
12463 25	Acquisition of blockwise truncated and non-truncated bi-plane C-arm data for CBCT volume-of-interest imaging [12463-84]
12463 26	Extraction of alveolar walls in 3D lung micro-images from large-field synchrotron radiation micro-CT using U-Net [12463-85]

12463 27	Penalty-driven enhanced self-supervised learning (Noise2Void) for CBCT denoising [12463-86]
12463 28	Corrections to Bremsstrahlung spectra for a hyperspectral x-ray detector [12463-87]
12463 29	Experimental optimization of photon-counting dual-energy thoracic imaging [12463-88]
12463 2A	2D versus 3D comparison of angiographic imaging biomarkers using computational fluid dynamics simulations of contrast injections [12463-89]
12463 2B	Spatial dependency of multiplanar reconstruction in digital breast tomosynthesis [12463-90]
12463 2C	Smoothing-parameter tuning for regularized PET image reconstruction using deep learning [12463-91]
12463 2D	Low-dose dual-tracer PET image reconstruction based on attention mechanism [12463-92]
12463 2E	A dual-layer direct/indirect flat panel detector for improved material decomposition: first studies of the indirect layer [12463-93]
12463 2F	Millimeter wave radar-based motion monitoring method in magnetic resonance imaging system [12463-94]
Part Two	
12463 2G	3D-GAN to generate representative and realistic three-dimensional breast cancer models for virtual clinical trial applications [12463-95]
12463 2H	An anatomic clutter phantom for lung-ventilation-imaging studies [12463-96]
12463 2J	Physics-informed multi-modal imaging-based material characterization for proton therapy [12463-98]
12463 2K	In vivo proton range validation using pseudo proton radiography [12463-99]
12463 2L	Optimization of MV-kV dual-energy CT imaging for tomographic therapy [12463-100]
12463 2M	First evaluation of 3D measurements of the compressed breast shape for digital breast tomosynthesis in the medio-lateral oblique view [12463-101]
12463 2N	Computational method to artificially insert clusters of microcalcifications in digital breast tomosynthesis [12463-102]
12463 20	A motion-level-aware denoising framework for x-ray fluoroscopic images [12463-103]
12463 2P	Direct reconstruction and separation for triple-tracer PET imaging based on three-dimensional encoder-decoder network [12463-104]
12463 2Q	PKAID-Net: prior knowledge aware iterative denoising neural network for photon counting detector CT [12463-105]

12463 2R	An experimentally validated simulation model of a two-bin flat-panel cadmium telluride photon-counting detector for spectroscopic breast imaging applications [12463-106]
12463 2U	Characterization of a carbon nanotube x-ray source array for a multisource CBCT [12463-109]
12463 2V	Eye-lens dose reduction using Region of Interest (ROI) attenuators in neuroimaging [12463-110]
12463 2W	Impact of non-Gaussian noise properties, not characterized by the noise power spectrum, on CT noise texture [12463-111]
12463 2X	Mass density estimation based on single-energy computed tomography via deep learning [12463-112]
12463 2Y	Utility of phantom-based testing for evaluating the performance of AI in MRI image reconstruction [12463-113]
12463 2Z	Comparing multi-view synthetic radiography derived from tomosynthesis with standard bitewing radiography [12463-114]
12463 30	Accurate image reconstruction in dual-energy CT with limited-angular-range data from completely non-overlapping scanning arcs [12463-115]
12463 31	Support-based extended field-of-view CT reconstruction for radiation treatment planning [12463-116]
12463 32	System matrix approach for attenuation compensation in photoacoustic tomography [12463-117]
12463 34	MMD-Net: multi-material decomposition network for high quality dual-energy CT imaging [12463-119]
12463 35	Anatomy registration via patient sensing for chest x-ray digital tomosynthesis [12463-120]
12463 36	Deep learning volumetric brain segmentation based on spectral CT [12463-121]
12463 37	Low-dose CT imaging performance of U-Net for varied spatial resolutions [12463-122]
12463 38	Dual-domain modulation for high-performance multi-geometry low-dose CT image reconstruction [12463-123]
12463 39	Robust multi-institution low-dose CT imaging with semi-supervised federated learning network [12463-124]
12463 3A	Spectral CT denoising using a conditional Wasserstein generative adversarial network [12463-125]
12463 3B	Deep learning-based all-in-one combined visualization strategy for disease screening in CT imaging [12463-126]
12463 3C	Noise-conscious explicit weighting network for robust low-dose CT imaging [12463-127]

12463 3D	Bayesian ensemble learning with denoiser pool for low-dose CT reconstruction [12463-129]
12463 3E	Self-attention network for weak-supervised learning multi-material decomposition in dual energy CT [12463-130]
12463 3F	Adaptive semi-supervised learning material estimation network in dual-energy CT [12463-131
12463 3G	Sparse constraint-based iterative estimation of effective atomic number and electron density for dual energy CT [12463-132]
12463 3H	Charge integration-based pulse pileup correction in photon counting detectors [12463-133]
12463 31	K-edge photon counting CT imaging using a dual-bin photon counting detector and kV switching [12463-134]
12463 3J	Analytic helical cone-beam artifact reduction for CT [12463-135]
12463 3K	A novel single-cell ion chambered AEC to reduce exposure dose for spot image acquisition in R&F applications $[12463-136]$
12463 3L	Reverberant magnetic resonance elastography [12463-137]
12463 3M	Multi-energy CT material decomposition using Bayesian deep convolutional neural network with explicit penalty of uncertainty and bias [12463-138]
12463 3N	Clinician-interactive AI for RECIST measurements in CT imaging [12463-139]
12463 30	Improvements in dose efficiency with high resolution scan modes in photon counting CT [12463-140]
12463 3P	A study on the accuracy of polynomial fitting for direct computation of material lengths from projection data in dual energy CT [12463-141]
12463 3Q	PixelPrint: a collection of three-dimensional printed CT phantoms of different respiratory diseases [12463-142]
12463 3R	Improving the quality of dental crown using a transformer-based method [12463-143]
12463 3\$	Model-based deep learning to achieve interpretable spectral CT denoising [12463-144]
12463 3U	Reconstruction of local noise power spectrum from a single CT data acquisition [12463-146]
12463 3V	Bayesian optimization of laser-Compton x-ray sources for medical imaging applications [12463-147]
12463 3W	Parameter selection for convex optimization time calibration for a 2-panel PET system [12463-148]

12463 3X	Direct respiratory motion correction of whole-body PET images using a deep learning framework incorporating spatial information [12463-150]
12463 3Y	Clinical developments of a stationary head CT using CNT x-ray source arrays [12463-151]
12463 3Z	In silico tools for evaluating denoising and super-resolution algorithms applied to radiographic images [12463-152]
12463 41	Hybrid a-Se/RD53B CMOS detector: initial studies [12463-154]
12463 42	Automatic quality control in computed tomography volumes segmentation using a small set of XCAT as reference images $[12463-155]$
12463 43	Automated animation pipeline for visualizing in silico tumor growth models [12463-156]
12463 44	Assessment of projection interpolation to compensate for the increased radiation dose in DBTMI [12463-157]
12463 45	Performance assessment of a focussed gamma probe using Monte Carlo simulations [12463-158]
12463 46	An edge-preserving mean curvature regularization for CT reconstruction [12463-159]
12463 47	Development of an iterative method for the geometric calibration of a photon counting detector-based cone beam CT system [12463-160]
12463 48	Evaluation of low-contrast detectability of photon-counting-detector CT using channelized Hotelling observer and an ACR accreditation phantom [12463-161]
12463 49	Evaluating the feasibility of using reduced scan length for non-contrast CT during image-guided liver ablations [12463-162]
12463 4A	Material decomposition for photon-counting CT using a flux-independent neural network [12463-163]
12463 4C	Experimental dual-kV reconstructions of objects containing metal using the cOSSCIR algorithm [12463-165]
12463 4D	Dose evaluation of simultaneous breast radiography and mechanical imaging [12463-166]
12463 4F	A comparison of digital-based CNT and analogue-based filament x-ray source in regard to intraoperative specimen x-ray system's development [12463-168]
12463 4G	A portable x-ray source based on CNT for chest radiography [12463-169]
12463 4H	Geometric comparison of chest tomosynthesis system with thermionic filament and carbon nanotube field emitter-based x-ray sources [12463-170]
12463 41	Operation of multi-beam compact tomosynthesis system using carbon nanotube emitters

12463 4J	Deep learning CT image restoration using system blur models [12463-172]
12463 4K	Carbon nanotube x-ray tube with bipolar operation for dental application [12463-173]
12463 4L	Is two better than one? Super resolution for dual-layer radiography with convolutional neural networks [12463-174]
12463 4M	Development of reflective type digital cell irradiation system based on carbon nanotube for biological research of low-dose radiation [12463-175]
12463 4N	Pulse driving of CNT cathode-based electron emitter for multi-x-ray source [12463-176]
12463 40	Carbon nanotube emitter x-ray source for high-resolution micro-computed tomography [12463-177]
12463 4P	Multi-modality GLCM image texture feature for segmentation and tissue classification [12463-178]
12463 4Q	Spectral correction using dual-material signal-to-thickness calibration [12463-179]
12463 4R	Development of a dynamic phantom for near infra-red optical and computed tomographic brain imaging [12463-180]
12463 4S	Bone suppression technique for multidirectional dynamic chest radiography: a virtual imaging trial [12463-7]
12463 4T	Towards appropriate use of test phantoms in training deep learning models for mammographic image conversion $[12463\text{-}19]$
	DIGITAL POSTER SESSION
12463 4U	Effects of x-ray excitation voltage on X-SWIR intensity and x-ray dose [12463-30]
12463 4V	VVBP-tensor-based deep learning framework for high-attenuation artifact reduction in digital breast tomosynthesis [12463-48]
12463 4W	Semi-centralized federated learning network for low-dose CT imaging [12463-65]
12463 4X	Dual-domain projection fidelity network for sparse-view helical CT reconstruction [12463-68]
12463 4Z	VVBP-tensor-based deep neural network for metal artifact reduction in computed tomography [12463-128]
12463 50	In-line stationary multi-source tomosynthesis for high throughput 3D x-ray inspection: a simulation study [12463-149]

Conference Committee

Symposium Chairs

Robert M. Nishikawa, University of Pittsburgh (United States) **Despina Kontos**, University of Pennsylvania (United States)

Conference Chairs

Lifeng Yu, Mayo Clinic (United States) **Rebecca Fahrig**, Siemens Healthineers (Germany)

Conference Co-chair

John M. Sabol, Konica Minolta Healthcare Americas, Inc. (United States)

Conference Program Committee

Shiva Abbaszadeh, University of California, Santa Cruz (United States) **Adam M. Alessio**, Michigan State University (United States) **Hilde Bosmans**, Universitair Ziekenhuis Leuven (Belgium)

Seungryong Cho, Korea Advanced Institute of Science and

Technology (Korea, Republic of)

Mini Das, University of Houston (United States)

Mats E. Danielsson, KTH Royal Institute of Technology (Sweden)

Maria Drangova, Robarts Research Institute (Canada)

Thomas G. Flohr, Siemens Healthineers (Germany)

Arundhuti Ganguly, TibaRay (United States)

Yongshuai Ge, Shenzhen Institutes of Advanced Technology (China)

Stephen J. Glick, United States Food and Drug Administration

(United States) and University of Massachusetts Medical School (United States)

Taly Gilat Schmidt, Marquette University (United States)

Marc Kachelriess, Deutsches Krebsforschungszentrum (Germany)

Karim S. Karim, University of Waterloo (Canada)

Patrick J. La Riviere, The University of Chicago (United States)

Ke Li, University of Wisconsin School of Medicine and Public Health (United States)

Quanzheng Li, Massachusetts General Hospital (United States)

Joseph Y. Lo, Carl E. Ravin Advanced Imaging Laboratories (United States)

Peter B. Noël, University of Pennsylvania (United States)

Frédéric Noo, The University of Utah (United States)

Jinyi Qi, University of California, Davis (United States)

Ioannis Sechopoulos, Radboud Universitair Medisch Centrum (Netherlands)

Behrouz Shabestari, National Institute of Biomedical Imaging and Bioengineering (United States)

Joseph W. Stayman, Johns Hopkins University (United States)

Anders Tingberg, Skånes universitetssjukhus (Sweden)

Adam S. Wang, Stanford University School of Medicine (United States)

Yuxiang Xing, Tsinghua University (China)

Wei Zhao, Stony Brook University (United States)