
Computer vision in roadway
transportation systems: a survey

Robert P. Loce
Edgar A. Bernal
Wencheng Wu
Raja Bala



Computer vision in roadway transportation
systems: a survey

Robert P. Loce
Edgar A. Bernal
Wencheng Wu

Raja Bala
Xerox Research Center Webster

Xerox Corp.
800 Phillips Road, MS128-27E

Webster, New York 14580
E-mail: robert.loce@xerox.com

Abstract. There is a worldwide effort to apply 21st century intelli-
gence to evolving our transportation networks. The goals of smart
transportation networks are quite noble and manifold, including
safety, efficiency, law enforcement, energy conservation, and emis-
sion reduction. Computer vision is playing a key role in this transpor-
tation evolution. Video imaging scientists are providing intelligent
sensing and processing technologies for a wide variety of applications
and services. There are many interesting technical challenges includ-
ing imaging under a variety of environmental and illumination condi-
tions, data overload, recognition and tracking of objects at high speed,
distributed network sensing and processing, energy sources, as well
as legal concerns. This paper presents a survey of computer vision
techniques related to three key problems in the transportation domain:
safety, efficiency, and security and law enforcement. A broad review
of the literature is complemented by detailed treatment of a few
selected algorithms and systems that the authors believe represent
the state-of-the-art. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JEI.22
.4.041121]

1 Introduction
From rapid advances in autonomous vehicle technology
to more ubiquitous driver assistance features in modern auto-
mobiles, the vehicle of the future is increasingly relying on
advances in computer vision for greater safety and conven-
ience. At the same time, providers of transportation infrastruc-
ture and services are expanding their reliance on computer
vision to improve safety and efficiency in transportation.
Computer vision is thus helping to solve critical problems
at both ends of the transportation spectrum—at the consumer
level as well as at the level of the infrastructure provider.

The ever-increasing demand on a limited transportation
infrastructure leads to traffic congestion, freight transporta-
tion delays, and accidents, with vast negative economic
consequences. Advances in computer vision are playing a
crucial role in solving these problems in ever more effective
ways—in traffic monitoring and control, in incident

detection and management, in road use charging, in road
condition monitoring, and in many more. Attractiveness
of computer vision for these uses primarily stems from
the cost-efficiency of these technologies as well as the
wide range of applications that computer vision can support.
Advanced driver assistance systems (ADAS) are being
deployed in ever-increasing numbers, but as the in-vehicle
compute power increases and as vehicle-to-infrastructure
communication becomes more robust, these systems will
begin to change their role from one of providing assistance
to one of facilitating decision-making as it relates to safety.

This article provides a comprehensive survey of methods
and systems that use computer vision technology to address
transportation problems in three key problem domains:
safety, efficiency, and security and law enforcement. We
have chosen this taxonomy and these key areas based on
our own survey of the literature and from conversations
with transportation agencies and authorities. In each of the
problem domains, the main approaches are first introduced
at a cursory level, and a few representative techniques
are then presented in greater detail along with selected
results demonstrating their performance. Where possible,
the technology descriptions are interspersed with the
authors’ own perspectives on challenges, opportunities, and
trends. Table 1 presents the taxonomy by which the survey
is organized.

The remainder of this paper is organized as follows. In
Sec. 2, computer vision technologies applied to safety appli-
cations are discussed. Technologies relevant to efficiency
improvement in transportation are presented in Sec. 3.
Section 4 reviews advances in computer vision technologies
in the areas of security and law enforcement applications.
Future trends and challenges are summarized in Sec. 5.

2 Safety and Driver Assistance
Intelligent transportation systems (ITS) are being developed
in many countries with the aim of improving safety and road
traffic efficiency. A key focus of ITS is the technology within
the so-called ADAS. Most ADAS utilize some form of sens-
ing the surrounding environment of a vehicle. Computer
vision plays a crucial role in sensing the environment,
extracting relevant analytics, and acting on the extracted
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information. In this section, we focus on several of the many
within-vehicle applications of video technology and com-
puter vision that offer the potential for significant improve-
ments in roadway safety and driver assistance.

2.1 Lane Departure Warning and Lane Change
Assistant

Researchers from the Insurance Institute for Highway Safety
(IIHS) estimated that if all vehicles had lane departure warn-
ing systems, the potential exists to prevent or mitigate as
many as 37,000 nonfatal injury crashes, 7,529 fatal crashes,
and about 179,000 crashes a year overall.1 It has also been
reported that a significant cause of such mishaps is driver
distraction, inattention, or drowsiness.2 Currently, the most
common approach for preventing unwanted lane departure
is to employ roadside rumble strips, which vibrate as a

vehicle veers in certain undesirable directions. However,
this roadway alert system is present on only a very limited
set of highways. One approach to preventing this type of
accident is through the use of lane departure warning
(LDW) systems.3 LDW systems typically track roadway
markings using a video camera mounted near the rear-
view mirror or on the dash board of a vehicle so the area
in front of the vehicle may be viewed. A warning signal
is given to the driver if a vehicle unintentionally approaches
a lane marking (i.e., without activating a turn signal). Typical
warning signals utilize sound, haptics, such as a steering
wheel or seat vibration, or lights and display systems.
The prevalence of LDW systems is expected to rapidly
increase. Various tax incentives are proposed in the
United States for vehicles with LDW systems, and legislation
in Europe mandates that new truck models will be fitted
with LDW systems from November 2013, and all new
vehicles from November 2015. The forums creating stan-
dards for LDW systems are the International Organization
for Standardization and the Federal Motor Carrier Safety Ad-
ministration. There are two key areas for standardization to
consider: a warning threshold, which determines when a
warning is issued, and a speed threshold and road curvature,
which are both used to classify the LDW systems. A sum-
mary of the standards is given in Tables 2 and 3.4

LDW cameras are typically positioned to view a distance
of ∼4040 mm in front of the vehicle with roughly a 50-deg
viewing angle. Roadway marking detection algorithms face
the daunting task of operating in real time and under multi-
farious weather conditions to detect and decipher within
this limited field of view a wide assortment of markings
including broken lines, unbroken lines, double lines, writing
in lane (e.g., car pool, arrows), only a center line, only an
edge line, Bott’s dots, hatched line, highway entrance and
exit markings, white lines, and lines of varying hues of
yellow.5 Environmental conditions that further complicate

Table 1 Taxonomy of problem domains, applications, and associ-
ated references presented in this survey.

Problem domains Applications and methods References

Safety Lane alert and assistance 1–15

Pedestrian detection 16–37

Driver monitoring 38–47

Adaptive environmental
sensing and control

48–78

Efficiency Traffic flow 79–112

Incident management 101, 113–125

Video-based tolling 126–140

Security and law
enforcement

Alert and warning systems 112

Traffic surveillance 40, 79, 141–151

Vehicles of interest 152–165

Speed enforcement 166–195

Enforcement at road
intersections

196–201

Mobile enforcement 202

Table 2 Summary of standards for lane departure warning.

ISO 17361:2007

Class I systems Class II systems FMCSA-MCRR-05-005

Earliest warning threshold See Table 3 See Table 3 Not stated

Latest warning threshold Trucks and buses: 1 m,
cars: 0.3 m outside the lane boundary

Trucks and buses: 1 m,
cars: 0.3 m outside the lane boundary

Not stated

Lowest operational speed 72 km∕h (45 mph) 61 km∕h (38 mph) 60 km∕h (37 mph)

Lowest operational road curvature 500 m 250 m 250 m

Table 3 Location of earliest warning threshold.

Rate of departure Vd (m∕s)
Distance the earliest warning line
is inside the lane boundary (m)

0 < Vd < 0.5 0.75

0.5 < Vd < 1 1.5 × Vd × TLCa

Vd > 1 1.5

aTLC is the estimated time to the vehicle crossing the lane boundary.
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the recognition task include rain and wet asphalt, nighttime
lighting conditions, sun on the horizon, shadows, snow, fog,
light-colored roadways (e.g., cement), tar seams, unmarked
roads, road damage or regions of repair, legacy lines, and
nearby vehicles. An LDW system should give as much warn-
ing time as possible, while triggering few, if any, false
alarms. Some implementations provide the warning when
the system observes a lane crossing, which requires very lit-
tle frame-to-frame processing and storage. Other implemen-
tations provide a prediction that a vehicle will cross a lane
boundary within a time threshold, which incorporates the
vehicle speed, trajectory, kinematic data from nonimaging
sensors, and a model of the lane boundary to determine
a time-to-lane crossing (TLC).6

Many vision-based lane detection methods use an edge
detection algorithm in conjunction with other tools such
as morphological filtering and frame-to-frame correlation
to create an edge image of the painted lines, and a Hough
transform applied to the edge image to define potential
lane boundaries. The potential lane boundaries can be fitted
to a geometric model for a roadway lane to eliminate the
effects of spurious visual signals. An example of a simple
road model is a straight line proposed in 1989.7 As research
in this area has progressed, more sophisticated techniques
such as snakes and splines have been proposed for modeling
lane boundary shapes.8,9 Many algorithms have assumed that
pavement edges and lane markings can be approximated
by circular arcs on a flat ground plane,10–13 and several inves-
tigators have found it beneficial to use three-dimensional
(3-D) models of lane boundaries.14,15

We now describe in more detail the algorithm proposed in
Ref. 6 as one of the more sophisticated and recent techniques
addressing this problem using a combination of computer
vision, data fusion, and vehicle models. Their system
comprises two modules: a data acquisition and elaboration
module that analyzes the video frames to estimate TLC
and a warning generation module that generates an alarm

based on the TLC estimate. The primary focus of the paper
is on the first module, wherein the lane geometry and vehicle
position relative to the lane are estimated from camera
frames. Referring to Fig. 1, the goal is to track and estimate
the distance to lane crossing from estimates of lane geometry
parameters (Xr, Yr) and vehicle trajectory parameters
(Xv, Yv). Such a task is of course crucial to detect a lane
departure because it provides unique information not
derivable by other on-board sensors. This module includes
two main phases: lane detection and lane tracking. Lane
detection relies solely on video data and comprises five
steps: (1) frame acquisition, (2) inverse perspective mapping
(IPM), (3) edge detection, (4) line identification, and (5) line
fitting. The second step, IPM, is a geometrical transforma-
tion technique that remaps each pixel of the two-dimensional
(2-D) perspective view of a 3-D object to a new planar image
corresponding to a bird’s eye view (see Fig. 2). In the third
step, edge points are defined as the zero crossing of the
Laplacian of the IPM smoothed image. Among all edge
pixels, only stripes need to be detected, so an additional
phase using steerable filters is employed in the fourth
step. To further define the edges, a threshold is applied to
binarize high-contrast transitions. In the fifth and final
step, a parabolic model is used to fit curved lines to the
edges, where the fit is performed using the random sample
consensus procedure.

In the second phase of lane tracking, Kalman filtering
is used to update coefficients to the parabolic model.
Nonimaging kinematic data are acquired from a steering
angle sensor and an angular speed sensor mounted on

Fig. 1 Distance to lane crossing model from Ref. 6. Fig. 2 Bird’s eye view resulting from inverse perspective mapping.
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a rear wheel. The kinematics are then combined into a
vehicle model by using a data fusion algorithm. Given the
nonlinear nature of the problem, Cario et al.6 employ both
the extended and unscented versions of the Kalman filter.

Roughly 5% of accidents in the United States occur when
making intended lane changes. This type of intended lane
departure is being addressed with an ADAS technology
referred to as lane change assistant (LCA), which monitors
adjacent lanes for the presence of vehicles; an alert is issued
to the driver if a lane change is initiated and the neighboring
lane is occupied.3 Many of the technical methods of LDWare
employed in LCA, with the additional function of monitor-
ing lateral views for the presence of vehicles.

Computer-vision-based lane detection has been an active
research topic for both LDW and LCA for at least the
past decade. However, the numerous challenging problems
encountered in addressing the totality of this important appli-
cation, coupled with an aging population that would benefit
from assistance, indicates that research and development will
be needed in this field for some time.

2.2 Pedestrian Detection
More than 39,000 pedestrians are killed and 430,000 are
injured worldwide each year.16 A key goal of ADAS is
the detection and avoidance of pedestrians. Pedestrian detec-
tion from the perspective of video surveillance with fixed
cameras has been extensively studied, but many new prob-
lems arise when a camera is mounted on a common moving
vehicle. The detection must comprehend a wide range of
lighting conditions, a continuously varying background,
changes in pose, occlusion, and variation in scale due to
the changing distance.

Many approaches have been proposed to address the
detection problem. As the technology evolves, the various
methods are being considered in concert to arrive at more
robust solutions. Shape-, texture-, and template-based meth-
ods17–20 individually have difficulties with different appear-
ances of pedestrians due to causes such as unknown distance,
varying pose, clothes, and illumination changes. Motion
detection is well suited for a pedestrian laterally crossing
the visual field. Motion detection via a method such as opti-
cal flow21 can indicate a region of interest (ROI) that can be
further analyzed for size, shape, and gait. The periodicity of
the human gait is a strong indicator of a pedestrian and can be
analyzed by clustering regions of pixels within the ROI as an
image feature and tracking corresponding clusters frame to
frame.22 Motion detection methods require multiple frames
to be acquired and analyzed, do not comprehend stationary
pedestrians, and can be confounded by changing back-
ground, changing lighting conditions, and longitudinal
motion. Stereo vision addresses the problem of range and
size ambiguity that occurs with monocular vision. Disparity
maps are derived from the two views. The disparity provides
information on distance that when coupled with detected
features, such as size, edges, and bounding box dimensions,
can be used to identify pedestrians.23

Recently, the more general problem of object detection
and recognition has become a focus of attention in the com-
puter vision community due to its widespread applications.
Much progress has been made in this area in the past decade
partly due to the introduction of various hand-designed
features, such as scale invariant feature transform (SIFT),24

histogram of oriented gradients (HOG),25 local binary patterns
(LBP),26 and maximally stable extremal regions (MSER),27

coupled with advanced machine learning techniques. Many
state-of-the-art object recognition methods follow a process
of first scanning the image at multiple scales with an object
detection module and then applying a technique such as non-
maximal suppression to recognize objects of interest in the
image. In the context of pedestrian detection, the work of
Dalal and Triggs25 has made a significant contribution by
introduction of the HOG feature. This was improved upon
by Felzenszwalb et al.,28 wherein the authors describe a frame-
work including detection of object parts and a statistically
learned deformable model that relates these parts. The result
was a significant improvement in both the accuracy of pedes-
trian detection and the extension to more general object
recognition.

Although computer vision approaches have made notable
progress in pedestrian detection and recognition, there is still
room for improvement in this arena, especially for critical
applications that require very accurate responses in real
time. Recent work29,30 suggests two major future research
directions for pedestrian detection, namely incorporating
context information for accuracy improvement and improv-
ing computational efficiency. By properly incorporating con-
text information into the object recognition algorithm, the
size of the search space and the false positive rate can be
greatly reduced. In Ref. 29, local and neighborhood windows
are first combined to construct a multiscale image context
descriptor. This descriptor represents the contextual cues
in spatial, scaling, and color spaces. An iterative classifica-
tion algorithm called contextual boost is then applied to
incorporate the designed contextual cues from the neighbor-
hood into pedestrian detection. Other methods that incorpo-
rate scene context into pedestrian detection are also
discussed in Ref. 29. Work in the area of improving compu-
tational efficiency includes Ref. 30, which presents a method
that can perform pedestrian detection at 135 frames per sec-
ond without degradation in detection accuracy. Two aspects
are explored here. The first is in handling different scales
needed for object recognition. Typical methods train a single
(scale) object model at training time and apply it to
resampled versions of the test image at all scales of interest
at testing time. The computational burden heavily resides in
the testing time and includes both the image resampling
process and the recalculation of features at each scale.
Instead, in Ref. 30, several object models (a fraction of
all scales of interest) are generated during training. At test
time, no image resampling is required, and only a part of
the feature needs to be recalculated at each scale. In particu-
lar, the gradient of each pixel is the same since there is no
image resampling. Only the histograms need to be recalcu-
lated at each scale. This shifts some computational burden
from the testing to the training stage. Since only a fraction
of all scales of interest is trained, the scales that match one of
the trained models will be processed directly. The scales that
do not match one of the trained models will be processed
efficiently through interpolation between scales. As a result,
it is possible to make a trade-off between the amount of com-
putational burden allocated to the testing and training stages
and the detection accuracy degradation due to interpolation.
The other aspect explored in Ref. 30 is akin to incorporating
scene context into pedestrian detection and uses an efficient
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stereo-vision method (stixel world model31) to detect the
ground plane and limit the search space for pedestrians to
only regions near the ground plane.

An evaluation of the state of the art in monocular pedes-
trian detection was performed in Ref. 32. Key findings
are that, despite significant progress in this area, perfor-
mance still has significant room for improvement. The
studies in Ref. 32 indicate that detection rate was low for
partially occluded pedestrians and low image resolutions.
Reference 32 provides several key elements that will aid
in advancing this technology: a comprehensive richly anno-
tated publically available data set, improved metrics and
evaluation methods.

Many recent systems use video sensing beyond the visible
spectrum. Infrared (IR) sensors are finding civilian applica-
tions due to the decreasing cost of uncooled sensors. Far-IR
(FIR) methods are based on the assumption that human body
temperature is higher than that of the environment, resulting
in pedestrians appearing sufficiently different in thermal
brightness compared to their background in IR imagery,
thereby aiding the step of pedestrian localization (see
Fig. 3). Other objects that actively radiate heat (cars, trucks,
etc.) can have a similar IR signature; however shape-, tem-
plate-, and motion-based methods previously developed for
visible spectrum imagery can be incorporated so as to aid
in distinguishing people from warm objects. Another factor
to consider is that IR imagery is less sensitive to lighting
changes and to shadows than visible imagery.33

The topic of pedestrian detection is not strictly limited to
walking humans. Reference 34 estimated that 1.5 million
deer–vehicle collisions occur annually in the United States
at a cost of nearly $1 billion in damages and resulting in
over 200 human fatalities. Detection of animals such as
deer, moose,35 and camels36 are all areas of active research,
given the potential to prevent many serious accidents.
Specialized bicycle detection methods37 are also a compo-
nent of pedestrian detection.

2.3 Driver Monitoring
According to the U.S. Department of Transportation’s
National Highway Traffic Safety Administration (NHTSA),
over 3,000 fatalities from automobile accidents are caused by
distraction, and 100,000 crashes, resulting in 40,000 injuries

and 1,500 deaths are caused every year by driver drowsi-
ness.38 Government and private sectors have begun to invest
significant effort to reduce such incidents. One example is
the Driver Distraction Program Plan published by NHTSA
in 2010, which serves as a guiding framework to eliminate
accidents related to distraction.39

Computer vision and video processing technology can
be leveraged to monitor driver behavior and attention and to
alert the driver of the presence of unsafe conditions. Video
capture is typically accomplished via cameras mounted or
built into the vehicle. The use of mobile (e.g., smartphone)
cameras as a portable monitoring system has also garnered
recent attention. Approaches in the literature fall in three
broad categories: (1) analysis of road conditions via a road-
facing video camera, (2) analysis of the driver’s face from a
driver-facing video camera, and (3) joint analysis and fusion
of driver-facing and road-facing views. The previous sec-
tions have described prime examples in the first category
of road-facing video analytics, namely LDW and detection
of objects and pedestrians on the road. In this section, we
complete the discussion by elaborating on driver-facing ana-
lytics and systems employing joint observations.

Analysis of driver-facing video footage has engendered
two threads of exploration, the first being drowsiness detec-
tion and the second being detection of driver attention by
estimating the direction of the driver’s gaze. Drowsiness
detection relies upon the fundamental ability to locate the
driver’s eyes in a video frame and to determine the eye
state, i.e., open versus closed. Eye localization is a form
of object detection and conceptually follows the approaches
of Sec. 2.2 but is tailored to detect the characteristics of
human eyes. A common approach for determining eye
state is to extract relevant features and train a binary classifier
on closed-eye and open-eye samples. In Ref. 40, an active
shape model helps localize the eyes, and speeded up robust
features (SURF) features are used to train a binary support
vector machine (SVM) classifier. A classification accuracy
of 92% is reported on a data set of 1355 open-eye and 425
closed-eye samples gathered by the authors. In Ref. 40, a
near-infrared (NIR) camera is used to capture driver-facing
videos, thus enabling drowsiness detection under low light
levels (e.g., at night) and in situations where the driver is
wearing sunglasses. In that work, eye localization is followed
by the extraction of four shape-based features: compactness,
eccentricity, Hu’s seventh moment, and the ratio of the num-
ber of white pixels in the top hat transform of the eye region
to that in the bottom hat transform. In addition, two texture-
based features are calculated, namely histogram energy and
contrast on the gray level co-occurrence matrix. A binary
SVM classifier with a Gaussian radial basis function kernel
is trained with this seven-dimensional feature representation.
The authors report between 83 and 95% classification accu-
racy across seven video sets. Once eye state is determined,
drowsiness indicators are computed such as percentage of
eye closure over time40,41 or blink rate, which can be corre-
lated with micro-sleep episodes.40

The second type of analysis performed on driver-facing
video is monitoring driver attention by estimating eye
gaze direction. Reference 42 addresses the problem by per-
forming head pose estimation. A windshield-mounted cam-
era sensitive to both visible and NIR light captures video
footage of the driver. Head pose estimation is accomplishedFig. 3 Far-infrared (IR) pedestrian detection.
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in three stages. First, Adaboost cascade detectors trained for
frontal, left-, and right-profile images are used to localize the
head and face region. Next, a localized gradient orientation
(LGO) histogram is calculated as a facial feature descriptor,
which is robust to scale, geometry, and lighting. Finally, sup-
port vector regression is used to learn a mapping from LGO
features to two pose dimensions: pitch and yaw. Ground truth
labels for training samples are gathered via an elaborate
experimental setup with optical sensors attached to the driv-
er’s head. Authors report mean absolute errors between 6 and
9 deg in pitch and yaw across different experimental condi-
tions and demonstrate that these results are state-of-the-art.
Note that head pose provides only an approximate indicator
of driver attention and that a more accurate estimate needs to
also consider eye gaze direction. Reference 43 reports an
excellent general survey of vision-based eye gaze estimation
techniques, grouping the approaches into three categories of
feature-based (by far the most popular), appearance-based,
and natural light methods. The application of gaze tracking
to the specific problem of driver monitoring is indeed a fer-
tile area for research.

The ultimate goal in driver monitoring is to determine if
the driver is paying attention to relevant objects and incidents
on the road. Thus, while many research efforts to date have
independently analyzed road-facing versus driver-facing
video, we believe the next major advancement in driver mon-
itoring is to be achieved via joint analysis and fusion of
interior and exterior observations. A recent example of an
effort in this vein is the CARSAFE mobile application.40

The authors propose dual video capture from the driver-
facing (or front) and road-facing (or rear) cameras of a smart-
phone. Since current hardware limitations do not permit
simultaneous capture on smartphones, the authors propose
a system that automatically switches between front and
rear cameras based on detection of various events. For exam-
ple, detection of lane departure from the rear camera will
prevent switching to the front camera. Conversely, if the
system detects driver drowsiness from the front camera,
it will force this camera to be the active sensor. The authors
report overall precision and recall rates of 0.83 and 0.75,
respectively, for detecting dangerous driving conditions.

There have been efforts to employ nonvision sensing
modalities for driver monitoring. Reference 44 proposes
using the inertial sensors in a smartphone, namely the accel-
erometer, gyroscope, and magnetometer, to obtain position,
speed, acceleration, and deflection angle and relate these to
driver behavior. Researchers have also explored biosensors
that measure photoplethysmographic,45 electrocardio-
graphic,46 and electroencelographic47 data to predict drowsi-
ness. When compared to vision sensors, these modalities
have the benefit of reduced data bandwidth and processing
requirements, and are arguably more direct measurements of
a driver’s physiological state. However, they are expensive
and require contact with the driver, which can be an incon-
venience. In the future, we can expect to see research efforts
that intelligently integrate input from multiple heterogeneous
vision and nonvision sensors, global positioning system
(GPS), and telematics to continuously monitor and alert
the driver of dangerous conditions. Vehicle-to-vehicle and
vehicle-to-infrastructure communication technologies will
also play an important role in monitoring, predicting, and
alerting drivers of unsafe situations.

2.4 Sensing for Other Adaptive and Warning
Systems

Computer vision is contributing to a number of other adap-
tive vehicle driving systems and warning systems:

1. Adaptive cruise control (ACC) uses sensors to mea-
sure the longitudinal distance of a leading vehicle
and determine road conditions to adjust distance to
the leading vehicle and adjust vehicle velocity. The
goal of ACC is to improve driving comfort, reduce
traffic accidents, and increase the traffic flow through-
put. Ultimately, ACC should resemble the natural
longitudinal behavior of a good driver. The underlying
distance measurement technology of existing systems
include millimeter wave radars (e.g., 77-GHz radars),
laser radars (LIDAR), and stereo imaging (introduced
on the Subaru Legacy Lancaster48).

2. Traffic sign recognition, when operating in real time,
can provide valuable assistance to a driver. For instance,
it can alert the driver to a current speed limit; provide a
secondary alert for stop or yield signs and various road
curve and intersection warnings; prevent inappropriate
actions, such as entering a one-way street, passing
another car in a no-passing zone, etc. Further, it can be
integrated into an ACC for less stressful driving. Traffic
sign recognition is aided by the limited set of signs
encountered in a given governmental domain. As with
pedestrian detection, most methods share a common
two-step strategy comprising a detection and a recog-
nition stage.49 Detection methods typically fall in one
of two categories: color-based and shape-based.50

Color-based approaches implement thresholding or
segmentation techniques based on a priori knowledge
of the intended color appearance of the road signs.51–57

More recently, advances in application of machine
learning techniques to color segmentation for road
sign localization have been reported. For example,
Ref. 58 proposes the use of a multilayer perceptron
trained on patches of traffic signs and nontraffic
signs. Reference 59 uses a spatiotemporal attentional
neural network to detect signs by analyzing color and
edge information. Reference 60 proposes the use of an
SVM classifier in conjunction with a color quantiza-
tion look-up table to achieve near-real-time road sign
segmentation performance.

Shape-based traffic sign detection approaches
usually rely on some form of the generalized Hough
transform. For example, Ref. 61 proposes a fast radial
symmetry transform that detects polygons in the
scene. Reference 62 proposes an algorithm to detect
triangular and rectangular shapes by first applying a
Harris corner detector and then searching for the pres-
ence of corners in prespecified spatial configurations.
The method proposed in Ref. 63 uses an SVM clas-
sifier to first segment the image in the RGB space
and then detects circular shapes in the segmented
regions. Reference 64 uses a Viola Jones detector
trained on annotated images containing 898 warning
signs and 1000 randomly selected negative samples.
Testing contained 428 signs. The authors reported
an 82% true positive rate; however, the false positive
rate was high (121 false detections).
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Once traffic signs have been localized, recognition
is performed via processes that fall into one of
two categories: template-based and classifier-based
recognition. Examples of template-matching-based
recognition include (1) performing normalized cross-
correlations between the detected sign and reference
signs in a database;65 (2) establishing matches between
test and reference signs based on the output of a train-
able similarity metric determination stage that is
trained based on individual matches in a set of local
image regions;66 (3) measuring the dissimilarity
between different signs by means of a special color
distance transform that enables robust comparison
of discrete colors prevalent in images of signs.67

The method proposed in Ref. 68 projects the localized
sign image onto a previously learned overcomplete
dictionary and performs recognition based on the pro-
jection coefficients. An example of classifier-based
recognition is Ref. 63, which is built in a form of
two committee machines, each composed of a series
of expert neural networks and an arbitration unit.
While the first machine works in the spatial domain
and provides accurate assessments of the relative ver-
tical and horizontal shifts of signs, the second machine
operates in the log-polar representation and has the
ability to accommodate rotations and vertical shifts.
Selection of a single answer from a group of experts
is done by an arbitration unit, which makes the deci-
sion based on a majority vote modality. Other exam-
ples include Ref. 58, which proposes the use of
a cascade of multilayer perceptron machines that
achieved 96% classification accuracy in near real
time, and Ref. 69, where programmable hardware
and neural networks are trained on 1500 scene images
from European country roads to achieve satisfactory
results in near real time. The method from Ref. 70
discusses various approaches that have been taken
to traffic sign recognition and proposes a detection
method based on AdaBoost classifiers trained on
color-sensitive Haar wavelet features followed by rec-
ognition based on Bayesian generative modeling.

3. Environmental sensing offers significant potential to
save lives. For instance, slippery roads are a factor
in >3800 fatalities annually in the EU-14 region.71

Roadway and environmental conditions are being
sensed by video cameras, both within-vehicle and at
stationary locations along roadways. The European
ASSET program has been actively pursuing within-
vehicle camera-based methods to detect the slipperi-
ness of roads. The approach of analyzing differences
in polarization of reflected light has been found to be
not robust in the estimation of slipperiness, while
analysis of NIR data is more robust, but significantly
more costly. Ice can be observed using a 1600-nm
spectral band, where the reflectance of snow is greatly
diminished. However, the drawback of using the 1600-
nm band is the high cost of using nonsilicon detectors.
Graininess analysis has been found to distinguish road
conditions, such as icy, snowy, wet, and dry, as well as
road type, such as asphalt, sand, or gravel.72 Figure 4
shows an example of distinguishing water on asphalt
using thermal IR. Computer vision is also assisting

environmental sensing for road maintenance applica-
tions. A main cause for road damage is moisture
ingress in environments that alternate between tem-
peratures above and below the freezing point. When
water passes the road surface layer and enters the
underlying structure, it weakens the structural integrity
by expanding each time it enters its crystalline phase.
Roadscanners, a Finnish company, employs a thermal
imaging camera from Forward Looking IR to identify
water ingress in the road surface that is not visible
to the human eye. When water has entered the road
structure, it changes the way the road heats and
cools. Patches of road that contain water can be iden-
tified in the thermal image in the dusk hours of
the morning and evening. This information can be
used to predict when sections of road will require
repair.73

4. Night vision systems (NVS) have gained significant
public interest since release of this technology by
vehicle manufacturers such as BMW, Mercedes, Audi,
Toyota, and Honda. NVS provide driver awareness of
pedestrians and animals beyond the capabilities of
low-beam and high-beam illumination systems. NIR
systems provide an overview of a road scene. NIR sys-
tems actively emit IR signals and receive the reflection
from pedestrians and animals, as well as from vehicles
and other objects.74 While most car headlights can illu-
minate the road up to ∼60 m in advance of a vehicle,
NIR systems will allow drivers to gain information
about traffic up to ∼150 m away, but their perfor-
mance falls under adverse weather conditions and
dirt covering the emitter.75 FIR systems offer several
advantages. Thermal radiation from humans peaks
in the 8- to 14-μm spectral band; hence, sensing in
that band requires no additional illumination.76

Pedestrians and animals appear more intense in the
FIR band because they are generally warmer than the
background environment at night, thus greatly aiding
automatic segmentation and detection. FIR systems

 

Fig. 4 Thermal IR detection of water on asphalt.
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are expected to extend vision to 300 m (Ref. 75) and
operate under adverse weather conditions.

5. High-/low-beam headlight control systems attempt to
improve night-time safety by optimizing the use of
high beams. An example is the Mobileye system,
where camera-based sensing and video processing
switches the high beams off in the following situa-
tions: preceding traffic (tail lights), tail lights are rec-
ognized in front of the host vehicle up to a distance of
400 m; oncoming traffic (head lights), an oncoming
vehicle up to a distance of 800 m; lit/urban areas,
the host vehicle enters a well-lit (or an urban) area.77

Other applications include blind angle monitoring,
parking assistance, rear-view cameras, weather detection,
autobending headlights, tunnel detection, and collision
mitigation systems.

A level of sensing and automation beyond driver assis-
tance described thus far is embodied in the systems that
enable autonomous vehicles, such as the much publicized
Google driverless car. To date, Google’s fleet of autonomous
vehicles have logged 450,000 driverless road miles. A key
technology used in Google’s implementation is a roof-
mounted Velodyne 64-beam laser, which creates a 3-D
map of everything in the immediate area of ∼5050 feet.
The 3-D image is combined with high-resolution maps
that have been programmed into the vehicle’s control system.
The laser system can differentiate between other cars, pedes-
trians, cyclists, and small and large stationary objects. Four
radars (one for front, back, left, and right) sense any fast-
moving objects from farther out than the laser can detect
and are used to give the car far-sighted vision for handling
high speeds on freeways. A front-mounted camera handles
traffic controls and observes road signs and stop lights for
information that a human driver typically uses. Other sensors
include a GPS, an inertial measurement unit, and wheel
encoder. While autonomous vehicle technology poses many
challenges to current roadway legislation, it does offer great
potential to mobilize citizens with impairments and could
make driving safer due to comprehensive sensing and rapid
decision making. For further details, the reader is referred to
the recent IEEE Spectrum Online article.78

3 Efficiency
Data derived from traffic volume studies can help local gov-
ernments estimate road usage, volume trends, critical flow
time periods, optimal maintenance schedules, as well as opti-
mal traffic enforcement time periods. Real-time traffic flow
data can also enable efficient incident management, which
consists of incident detection, verification, and response.

3.1 Traffic Flow
Traditional approaches to automated vehicle counting and
traffic flow estimation include roadway sensors such as pres-
sure hoses, piezoelectric sensors, and induction coils. These
methods are typically inaccurate as well as difficult and
sometimes expensive to deploy and maintain, as they have
to be physically laid out on the target road or highway.
Less intrusive roadway sensor systems such as sonar, micro-
wave, and laser-based systems are sometimes employed, but
they are expensive and highly sensitive to environmental
conditions. Additionally, all roadway sensors have difficulty

in detecting slow and stationary vehicles. However, the main
downside of roadway sensors is that they provide limited
information, namely vehicle count or traffic speed and/or
volume alone. The application of computer vision techniques
to the analysis of video sequences to assess traffic conditions,
on the other hand, can be provided as a value-added option to
already deployed traffic or surveillance camera network sys-
tems devoted to tolling and law enforcement (speed, red
light, stop sign, etc.).79 Application of real-time processing
of images and videos to perform road traffic data collection
dates back to the early and mid-1970s at the University of
Tokyo,80,81 where the authors developed a system to measure
traffic flow and vehicle speed and length from real-time
processing of videos. In England in the 1980s,82–88 members
of the Traffic Research using Image Processing group devel-
oped a pipeline-based system for off-line measurement of
vehicle count and speed. Belgian researchers89 developed
the camera and computer-aided traffic sensor system,
which estimated average traffic speed, vehicle length, and
intervehicle gaps and performed vehicle classification.

The Advanced Computing Research Centre at the
University of Bristol devised a system capable of multilane
vehicle counting, speed measurement, and tracking in com-
plex traffic scenarios.90–93 Researchers at the Swedish Royal
Institute developed a system that performed vehicle count
and approximate speed estimation on roads with up to
three lanes.94 A system developed at the Iran University
of Science and Technology95 enabled automatic estimation
of traffic queue parameters in real time. The capabilities of
the system were later extended to enable real-time calcula-
tion of traffic parameters96 and traffic monitoring at intersec-
tions.97 A research group at University of California,
Berkeley, produced a system capable of detecting and
tracking multiple vehicles with robustness to occlusion
while, at the same time, outputting vehicle shape parameters
that can be used in vehicle classification.98–100 The University
of Minnesota developed Autoscope,101,102 a system capable
of measuring real-time traffic parameters. The outputs of the
traffic analysis modules are input to a computer, which pro-
duces a virtual view of the road conditions. Autoscope also
has a traffic controller module capable of manipulating traffic
lights and managing variable message signs. Reference 103
proposed a hybrid method based on background subtraction
and edge detection for vehicle detection and shadow rejec-
tion, based on which vehicle counting and classification,
as well as speed estimation in multilane highways, is
achieved. The MODEST European consortium introduced
Monitorix,104 a video-based traffic surveillance multiagent
system where agents are grouped in tiers according to the
function they perform. The authors of Ref. 105 introduced
a model-based approach for detecting vehicles in images
of complex road scenarios. They attempt to match image fea-
tures with deformable geometric models of vehicles in order
to extract vehicle position, pose, and dimensions from which
they can extract vehicle speed, count, and junction entry/exit
statistics. In order to minimize the number of cameras used to
monitor traffic within a city, Ref. 106 presented a novel strat-
egy for vehicle reidentification, which matches vehicles leav-
ing one monitored region with those entering another one
based on color, appearance, and spatial dimensions of the
vehicles. Reference 107 presented a prototype of a smart
camera with embedded DSP implementations for traffic
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surveillance. An algorithm that calculated queue length and
flow across intersections via a back-propagation neural net-
work was proposed in Ref. 108.

Reference 109 proposed a video analysis method for
vehicle counting that relies on an adaptive bounding box
size to detect and track vehicles according to their estimated
distance from the camera, given the geometrical setup of
the camera. The authors of Ref. 110 proposed a vehicle
counting method based on blob analysis of traffic surveil-
lance video. A three-step approach consisting of moving
object segmentation, blob analysis, and tracking is described.
Reference 111 proposed a video-based vehicle counting
method based on invariant moments and shadow-aware fore-
ground masks. Background estimation for foreground seg-
mentation is performed with a mixture of Gaussian models,
as well as with an improved version of the group-based histo-
gram. Shadow-aware foreground detection is achieved by
performing background subtraction with shadow removal in
the hue, saturation, and value color space. Vehicle classifi-
cation is performed by computing moment invariants of the
foreground mask; moment invariants are properties of con-
nected components in binary images that are invariant to
translation, rotation, and scaling, and can be used for shape
classification and coarse object recognition. More recently,
Ref. 112 proposed a video-based vehicle counting scheme
that operates on the compressed domain by analyzing the
magnitude, stability, and coherence of clusters of motion vec-
tors associated with vehicles passing by a virtual sensor. Given
that video compression is usually performed in real time on
embedded camera hardware, and since building the vehicle
counting capabilities into the compression step only adds a
small amount of computation, the proposed approach is con-
ducive to real-time performance. The authors report achieving
a false positive rate of 3.4% and a false negative rate of 2.3%
with the proposed method applied to a variety of videos shot
under different conditions, frame rates and resolutions.

Traffic flow estimation was one of the problems first
addressed by automated video analytics, and, as such, it
garnered significant attention in the early years of the tech-
nology. Recently, however, the scholarly literature on this
topic has diminished. A possible explanation is that the
field has evolved from a phase of basic research to one of
commercialization in practical applications, such as con-
gestion management and prediction, and that most of the
attention is now being devoted toward enabling real-time
implementations that achieve levels of performance match-
ing or exceeding industry requirements.

3.2 Incident Management
An incident is defined as “an event that causes blockage of
traffic lanes or any kind of restriction of the free movement
of traffic.”113 Examples of incidents include stalled vehicles,
accidents, road debris, and chemical spills. Reports estimate
that in 2005, traffic incidents incurred a cost of $6.9 million
vehicle-hours and 7.3 million of gallons of fuel.101 Studies
show that accidents and disabled cars account for 20% of
all causes of congestion on metropolitan expressways.114

Effective incident management from detection through
response is required. Incidents are classified into two catego-
ries: primary and secondary. Secondary incidents are those
caused by preceding or primary incidents. It is estimated that
anywhere between 20 and 50% of all freeway accidents are

secondary,115 which highlights the importance of early dis-
covery and clearing of primary, abnormal incidents.

Research on incident detection and incident prediction
dates back to the early 1990s when a system that detected
extraneous objects obstructing tunnels and tight curves in
roads was introduced.116 Two years later, a method based
on image processing and fuzzy techniques that attempted
to predict an incident before its occurrence was proposed.117

Guidelines for incident detection were presented in the
framework of the DRIVE V2022 Euro-Triangle project.118

Reference 119 proposed breaking down incident detection
into micro- and macroscopic detection; the former related
to incidents that occur within the field of view of the camera,
while the latter is inferred from aggregated traffic flow
parameters. A novel architecture for developing distributed
video networks for incident detection and management was
introduced in Ref. 120. A camera-based incident detection
system to automatically detect slow-moving or stopped traf-
fic on traffic lanes and shoulders was described in Ref. 121.
More recently, a video-based incident detection system was
deployed and tested on cameras monitoring the San Mateo
Bridge in the San Francisco Bay Area.122 The system was
effective in detecting incidents on both traffic lanes and
shoulders, regardless of traffic and weather conditions and
time of day. Recognizing that the accuracy of video-based
automatic incident detection is heavily affected by environ-
mental factors such as shadows, snow, rain, and glare,123

reviewed existing compensation techniques and highlighted
potential research directions to address the lack of robustness
of existing systems to such factors. Reference 124 presented
a framework for real-time automated recognition of traffic
accidents based on statistical logistic regression analysis,
which records the trajectories of vehicles involved in acci-
dents as guidelines for investigators. Reference 125 pre-
sented robust incident detection systems based on the
fusion of audio and visual data captured by hybrid systems
that included video cameras and microphone arrays, as illus-
trated in Fig. 5. While traditional video-based vehicle detec-
tion and tracking was implemented, improved performance
was achieved by introducing sophisticated algorithms that
support fusion of multiple, asynchronous sources of data.
This resulted in a system that offered improved robustness
to varying environmental conditions relative to traditional
vision-based systems, as well as increased area coverage rel-
ative to traditional microphone arrays. The authors present
exemplary vehicle detection outputs achieved by the system
under extreme weather conditions such as heavy fog, which
would render a traditional vision-based system inoperable.
The asynchronous nature of the data sources resulted from
the nonoverlapping operating areas of each of the systems
(see Fig. 5); synchronization of data sources was achieved
by predicting the time it would take a vehicle to traverse

 

 

Fig. 5 Overview of the system presented in Ref. 125.
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the blind area between the two disjoint coverage areas via
video-based speed estimation and knowledge of relevant
sensor geometry parameters and scene dimensions. The sys-
tem was successfully applied to the detection of stranded
vehicles, traffic jams, and wrong-way driving episodes on
Austrian highways.

We expect the ever-increasing sophistication of low-level
video analytic algorithms devoted to motion detection and
object tracking coupled with advanced machine learning
techniques to contribute to the increased automation, robust-
ness, and self-sufficiency of incident detection systems. This,
in turn, should be reflected in shorter response times and
improved efficiency and performance of first-responder
entities and personnel.

3.3 Video-Based Tolling
Automated open road tolling (ORT) or free-flow tolling
refers to the collection of road use fees without the need
for physical toll booths. The idea of using wayside electronic
transponders to record vehicles passing specific points on
roads for the purpose of tolling was first proposed in
1959.126 The advantages of automated tolling technology
include improved customer service, network operations, con-
gestion management, and pricing.127 An advantage of video-
based tolling systems is that, since toll fees typically vary
across different vehicle types, such systems can seamlessly
be extended to perform vehicle classification tasks. Video-
based tolling is based on high-speed image capture and
license plate recognition technologies, and is typically imple-
mented in conjunction with other vehicle classification sys-
tems, typically based on the use of transponders such as
radio frequency identification (RFID) devices. The downside
of RFID-based systems is that they require compliance from
drivers, as they require specifically designed tags or tran-
sponders to be carried or installed in the vehicles. The first
video-based tolling system deployed in North America
(along Highway 407 in the greater Toronto area) uses
a video module to determine the entry and exit points of
a vehicle and performs license plate recognition and billing
based on time, distance travelled, and vehicle type. A data-
base of video accounts is then built by matching the recog-
nized license plate numbers with the driver and vehicle
information.128 A similar system is in place in the state of
Virginia, where a license plate recognition system is used
to capture images of license plates of vehicles without a
valid transponder that pass through a toll point, as illustrated
in Fig. 6.129 Starting in February of 2003, the city of London
has charged a fee for driving privately owned vehicles in its
central area during weekdays as a way to reduce congestion
and raise revenue.130 A network of video cameras records
license plate numbers and matches it with a list of customers
who have made a payment in advance. The owners of
vehicles that have not paid the congestion fee are sent a
fine. Similar camera-enforced pricing systems for congestion
avoidance exist in Stockholm131 and Singapore.132 The Texas
Department of Transportation deployed the pay-by-mail
system in the fall of 2006, which allows drivers who do
not possess a Texas toll tag to use electronic toll collection
facilities that perform tolling based on license plate recogni-
tion systems. The drivers receive a monthly bill in the mail
via the vehicle registration data linked to their license
plate.133 Systems that require the driver to call in advance

and register his/her license plate number into a database
exist in Melbourne, Australia,134 and Santiago, Chile.135

The driver gets billed when the system’s video cameras
pick out their license plate number while in transit. Video
analytics technologies have also been used in Austria
since 2004 and in Germany since 2005 to enforce road-
usage fees for freight vehicles.136

Video-based toll collection has driven the expansion of
high-occupancy vehicle (HOV) lanes to high-occupancy
toll (HOT) lanes in certain U.S. states such as California,
Texas, Georgia, and Minnesota.137 In HOT, the assessed
toll is a function of the number of occupants in the vehicle.
For both HOV and HOT applications, enforcement is very
difficult and is typically performed by police officers detain-
ing and visually inspecting vehicles. Enforcement rates of
10% are often quoted where actual violation rates can be
>6565% of the vehicles using the HOV lane.

Computer vision techniques are being introduced to auto-
mate or semiautomate the enforcement process.138–140

Reference 140 recently proposed a classifier-based imaging
and face detection method of enforcement. Successive mean
quantization transform (SMQT) features are chosen due
to their relative insensitivity to illumination variations.
SMQT consists of a series of simple operations. First, the
mean of the pixels in a 33 × 33 pixel region surrounding
the pixel of interest at location (ii; ; jj) is calculated.
Next, those pixels with gray values above the mean are
set to 1 and all others to 0. The result is a 9-bit pattern of
zeros and ones (one bit per pixel in the 33 × 33 local region)
with 512 possible patterns associated with the pixel of inter-
est. This 9-bit pattern can be described as a binary nine-
dimensional feature vector Xij corresponding to pixel loca-
tion (ii; ; jj). This process is repeated for all pixels within an
mm × nn frame where image classification is to be per-
formed. The features are then fed to a classification tech-
nique referred to as sparse network of winnows (SNoW)
that classifies “face” versus “no-face” regions in the passen-
ger position of the front seat. SNoW employs linear classi-
fication in a very high-dimensional sparse feature space and
can be described mathematically as

y^¼¼
1; if

P
ijk
WijkXijk > θ

−1 otherwise
; ;

(
(1)

Fig. 6 License plate recognition system used to identify vehicles with-
out a radio frequency identification transponder.129

Journal of Electronic Imaging 041121-10 Oct–Dec 2013/Vol. 22(4)

Loce et al.: Computer vision in roadway transportation systems: a survey



where Xijk is the kk’th element (0 or 1) of feature vector Xij,
Wijk is a weighting factor that is learned during the training
phase using an iterative update rule, and y^ is the class label.
Using SMQT and SNoW, Ref. 140 was able to achieve a 3%
error rate (false violator) and a 90% true positive rate on a
data set where passengers were generally facing forward.
Figure 7 shows sample output images illustrating the classi-
fication performance of the proposed approach.

Given their flexibility and scalability, we expect video-
based toll collection technologies to gradually supersede
RFID and tag-based solutions as the technology of choice
to satisfy the ever-increasing need for ORT. First, the tran-
sition would eliminate the need for voluntary enrollment at
the customer end, thus significantly enhancing the pene-
tration rate and pervasiveness of the technology; note that
participation level is an important parameter in transpon-
der-based tolling because processing costs of nontrans-
ponder transactions are significantly higher than the cost
of transponder transactions. By migrating to video-based
solutions, this level of dependence on the willingness of
the drivers to ascribe to a given technology is ameliorated.
Operational and maintenance costs of automated tolling
technologies should also decrease as there would be no need
to distribute and manage transponders, manually process
payments and disputes, pursue nonpayers, etc. Lastly, cur-
rent and future applications such as vehicle classification for
efficient routing and automated rate selection from vehicle
type, automatic collection of evidentiary imagery and foot-
age, as well as variable toll rates (based, for example, on level
congestion, occupancy, time of day, day of week, etc.) would
be readily supported.

4 Security and Law Enforcement
Computer vision technologies are playing key roles in the
areas of transportation security and law enforcement. There
are several common elements shared by computer vision sys-
tems aiming to meet security or law enforcement needs. For
example, the detection and identification of events of interest
is an important capability common to both security and law

enforcement. On the other hand, there are also several dis-
tinct characteristics that separate a security application from
law enforcement. For example, prediction and prevention are
important for security applications while accuracy and evi-
dence are important for law enforcement. In many cases,
a security system can serve as a front-end of a law enforce-
ment system. For example, in order to enforce certain traffic
violations, it is necessary to detect and identify the occur-
rence of such an event. Below, we focus on several example
applications within these two broad categories to elucidate
the general principles.

4.1 Security
Video cameras have been widely used for security and sur-
veillance for quite some time due to their low cost, ease of
installation and maintenance, and ability to provide rich and
direct visual information to operators. The use of video cam-
eras enables centralized operations, making it possible for
an operator to coexist at multiple locations. It is also possible
to go back in time and review events of interest. Many
additional benefits can be gained with a video sensing and
recording modality using computer vision technologies.
Consider that, traditionally, the output of these cameras has
been viewed and analyzed in real time by human operators
and is archived for later use if certain events have occurred.
The former is error prone and costly, while the latter has lost
some critical capabilities such as prediction and prevention.
Computer vision and assistance, and extraction of video ana-
lytics, are of great research interest to fully reap the benefits
of video sensing.

4.1.1 Alert and warning systems

In some applications, very rapid analysis of large video data-
bases can aid a critical life-or-death situation. Amber Alert
is an emergency alert system to promptly inform the public
when a child has been abducted. It has been successfully
implemented in several countries throughout the world.
When sufficient information is available about the incident
(e.g., description of captor’s vehicle, plate number, color,
etc.), a search can be conducted across large databases of
video that have been acquired from highway, local road,
traffic light, and stop sign monitoring, to track and find
the child. Similar to Amber Alert and much more common
is Silver Alert, which is a notification issued by local author-
ities when a senior citizen or mentally impaired person is
missing. Statistics indicate that it is highly desirable that
an Amber/Silver Alert–related search is conducted in a very
fast and efficient manner, as 75% of the abducted are mur-
dered within the first three hours.

Consider a statement from the West Virginia code on
Amber Alert 15-3A-7:

“the use of traffic video recording and monitoring devices for
the purpose of surveillance of a suspect vehicle adds yet
another set of eyes to assist law enforcement and aid in the
safe recovery of the child.”

Recent advances have been made in efficiently searching
for vehicles in large video databases through an adaptive
compression and compatible decompression method.112

Rather than selecting reference compression frames in a

Fig. 7 Face classification in seat passenger positions: red—classified
as face, green—classified as no face.140
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conventional manner at fixed time intervals, Ref. 112 selects
reference frames as those where vehicles are in an optimal
viewing position. Thus, the vehicles captured across many
hours of video can be viewed by only decompressing the
reference frames, as illustrated in Fig. 8.

By performing reference frame selection based on the par-
ticular video content, the algorithm from Ref. 112 narrows
down the search space relative to conventional approaches.
Although this reduction in search space size is dependent on
traffic conditions, it works best in low- and medium-traffic
volume scenarios; the boost in efficiency can be significant
in subsequent search tasks relative to the naïve approach
where reference frames are inserted at fixed rates. Beyond
the specific application of efficient video search and
retrieval, Ref. 112 introduces a potential paradigm shift
away from the traditional approach whereby computer
vision–related tasks are performed on uncompressed images
and video. By exploiting the feature-rich nature of com-
pressed data, the proposed framework incurs negligible
amounts of additional computational expenses on top of
what is required for video compression. Since motion-com-
pensated video compression can be performed in real time on
embedded hardware found in most internet protocol (IP)
cameras, the gap to real-time performance of computer
vision tasks is significantly bridged by operating in the com-
pressed domain.

4.1.2 Traffic surveillance

Computer vision in the context of traffic surveillance
addresses problems such as vehicle/pedestrian detection,
tracking, traffic flow measurements, and the representation,
understanding, and prediction of human behavior (e.g.,
anomalous incident detection, illegal turns, aggressive driv-
ing patterns, etc.). Several of these applications have been
discussed in detail in earlier sections. Here, we focus on
the overall system through the sampling of several survey
papers in human and/or traffic surveillance79,141–146 with

an emphasis on research efforts in behavior representation,
understanding, and prediction.

A general discussion framework used by papers on
human and traffic surveillance is to categorize vision tasks
into three stages:

1. Low-level computer vision (the term “core technolo-
gies” is used in Ref. 142) that includes object detection
and tracking.

2. Mid-level computer vision (the terms “event”142 and
“action”143 are used) that includes analysis of trajec-
tory dynamics or patterns such as a human walking.

3. High-level computer vision (the terms “activity” and
“behavior” are used) that includes incident or anomaly
detection, e.g., human fighting.

However, in the literature, different categorization boun-
daries, different focuses, different methods of grouping these
technologies, and different levels of detail are presented.

In this paper, our discussion follows a three-level frame-
work similar to that used in Ref. 144. Figure 9 shows an illus-
tration of an exemplary hierarchy of three-level computer
vision tasks and the corresponding information needed in
traffic surveillance applications. A typical traffic surveillance
system would start with object detection and tracking,
i.e., the low-level computer vision task, as described in
Sec. 2.2. At this level, the amount of information needed
is smaller compared to other levels. Detecting an object of
interest can often be performed via pixel intensity changes
over time such as frame-to-frame differences, statistics of
local pixel intensity over time such as a Gaussian mixture
model for background subtraction, or motion analysis
using motion vectors or optical flow. Other machine learning
and pattern recognition methods can be used to directly
detect a specific type of object such as a vehicle (see
Sec. 4.1.3), but the computation of these methods tends to
be more costly. Once the object of interest is detected,

Fig. 8 Method for efficient vehicle searches in large video databases proposed in Ref. 112.
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many tracking methods, such as mean-shift, feature or tem-
plate matching, etc., can be applied to follow the object of
interest. Tracking yields trajectories of the objects of interest.
For interested readers, an excellent review of computer
vision technologies on object detection and tracking can
be found in Ref. 147. At this level, many traffic flow mea-
surements such as vehicle count, average traffic speed, etc.,
become readily available. However, for further traffic sur-
veillance needs such as access control, illegal turn detection,
and incident or anomaly detection, we need to move to the
middle level where the dynamics or patterns of these trajec-
tories are understood and analyzed. Understanding trajectory
dynamics or patterns often involves grouping and classifica-
tion. Machine learning techniques are well suited for this
task. A common approach is to first perform clustering in
the training phase based on some form of distance or sim-
ilarity measure. At the highest level of the hierarchy, the
resulting clusters are then modeled to represent the behavior
of each cluster. As new trajectories are identified from the
traffic scene, they are compared to these models for discov-
ery of events of interest such as incidents, anomalies, etc.
For more complicated behavior, the interaction among the
behavior of a group of individuals may also need to be exam-
ined and modeled. Note that this does not mean that one
can blindly apply known machine learning techniques and
have success; additional domain knowledge and contextual
knowledge about the scene and rules are fairly critical for
traffic surveillance. For example, not all vehicles would
travel at the exact same speed within the field of view of
the surveillance camera. As a result, the number of samples
of the different trajectories may not be the same. Hence a
normalization step is generally needed prior to the estimation
of the traveled distance in the clustering step. For another
example, a stop-and-go trajectory pattern is considered nor-
mal at an intersection with a stop sign while the same pattern
is an indication of traffic congestion at a highway segment.
In this case, some rule-based reasoning or additional contex-
tual information about the scene needs to be provided and
taken into account in the clustering or behavior modeling.

It is clear that trajectory analysis lies at the heart of many
of the approaches in the middle and higher levels of the sur-
veillance hierarchy. A general discussion on vision-based
trajectory learning for surveillance can be found in Ref. 144.
Furthermore, in the broader context of surveillance, many
existing methods such as dynamic time warping, finite-state

machine, hidden Markov models, time-delay neural network,
syntactic techniques, nondeterministic finite automaton,
self-organizing neural network, etc., have been applied for
behavior understanding.145 Thus, advances in the high-level
vision tasks for traffic surveillance are promising.

Recently, Ref. 146 presented a thorough review on com-
puter vision techniques for urban traffic surveillance, where
commercial systems in use and computer vision techniques
used in traffic analysis systems are reviewed; the state of
the art for prototype and academic systems is analyzed,
and detailed discussions and an outlook to future research
are provided. The survey highlights key differences between
urban traffic surveillance and highway traffic surveillance.
As would be expected, urban traffic surveillance is much
more challenging than highway surveillance due to the com-
plexity of scene and road usage. For example, for a highway
scene as compared to an urban scene, vehicle trajectories
have fewer and simpler patterns, pedestrian detection (see
Ref. 148 for a survey in this area) and analysis of vehicle–
pedestrian interactions are generally not necessary or critical,
and occlusion is not as challenging. Another interesting
discussion in Ref. 146 is the comparison between two sur-
veillance system methodologies. Earlier systems are likely to
follow a framework where object tracking is done without
knowledge of object classes (thus, being simpler and faster).
With the advances in computer vision and computation,
a framework where knowledge of object classes is available
prior to tracking has become more promising in solving more
challenging tasks. The latter framework has more potential
for better performance (accuracy, robustness) at the expense
of more processing. Since these systems need to operate
in real time or near real time in practice, the choice between
the two frameworks is not straightforward and is likely to
be application dependent.

We elaborate now on the problem of anomalous incident
detection, which is at the highest level of the hierarchy.
Examples of transportation anomalies include traffic viola-
tions, accidents, dangerous pedestrian–driver behavior,
unattended baggage at public transportation sites, etc. An
excellent survey of video anomaly detection techniques
can be found in Ref. 149. The approaches can be broadly
categorized into supervised methods, where both normal
and anomalous events are classified, and the more realistic
unsupervised scenario, where class labels are available only
for normal events. In the supervised case, anomaly detection

Fig. 9 Illustration of an example of three-level computer vision tasks and the corresponding information needed in traffic surveillance applications.
Note that this figure is a modification of Fig. 1 in Ref. 144.

Journal of Electronic Imaging 041121-13 Oct–Dec 2013/Vol. 22(4)

Loce et al.: Computer vision in roadway transportation systems: a survey



therefore reduces to a classification problem, while in the
unsupervised case, the problem is one of outlier detection.
In the transportation domain, many anomaly detection
approaches leverage the aforementioned advances in object
tracking to define normal and anomalous events in terms of
vehicle trajectories.

A recent development in this area is the use of sparse
reconstruction techniques for detecting anomalous vehicle
trajectories.149,150 An over-complete dictionary comprising
normal trajectory classes is first constructed in a training
phase. The trajectory classes can either be labeled manually
using semantic categories or derived via an automatic unsu-
pervised (e.g., clustering) technique. The hypothesis is that
any new normal trajectory should lie within the linear span of
other normal trajectories within the same class and thus can
be reconstructed by combining a relatively small number of
dictionary elements. Equivalently, the reconstruction coeffi-
cient vector is sparse, as is illustrated in Fig. 10.

Conversely, reconstruction of anomalous trajectories is
likely to involve a larger number of dictionary elements,
potentially across multiple classes, and therefore the
reconstruction vector would not be sparse. Anomaly detec-
tion therefore reduces to sparse reconstruction of a test tra-
jectory with respect to the training dictionary, followed by
a method of measuring sparsity. Reference 149 presents
a formulation for single-object events. Reference 150
extends the sparsity framework to joint modeling of multi-
object events and furthermore introduces a kernel to improve
class separability. Both techniques accomplish sparse recon-
struction via L1 norm minimization.

Since anomaly detection algorithms reduce to a binary
decision (i.e., is the event an anomaly or not?), a standard
method of evaluating algorithm performance is to report
the confusion matrix of false- versus true- positive and neg-
ative samples. Table 4 compares confusion matrices obtained
from the joint sparsity model150 with another well-recog-
nized algorithm in Ref. 151 that employs a one-class
SVM classifier on vehicle trajectories. The data set used
to train and test the approaches is a collection of vehicle tra-
jectories obtained at a stop sign intersection. Vehicles com-
ing to a complete stop at the intersection are labeled as
normal events. The goal is thus to flag stop sign violations
as anomalous events. The sparsity-based method is shown to
significantly outperform that of Ref. 151, especially in the
presence of occlusions.

A recent thread of exploration in anomaly detection is to
employ holistic event representations such as spatiotemporal
volumes40 in favor of trajectory representations. The main
advantage with this approach is that the performance of
anomaly detection is no longer sensitive to the accuracy
of object trackers, many of which fail in the presence of
occlusions and other types of noise. On the other hand,
such holistic approaches are likely to involve higher compu-
tational cost. Another significant challenge in anomaly
detection is the lack of standardized benchmark data sets,
especially ones that include ample anomalous events in com-
plex realistic scenarios.

In summary, many computer vision techniques have been
applied for traffic surveillance and human surveillance. In
recent years, there have been great advances at all levels,
low, middle, and high. However, large gaps remain in the
regime of high-level computer vision tasks such as behavior
understanding and prediction, especially in realistic scenar-
ios where many sources of noise abound such as occlusion,
clutter, varying illumination, shadows, etc. We expect more
focus in this area in the future. Fusion technologies for
integrating information from multiple cameras or multiple
modalities of traffic sensing could gain (and have indeed
gained) more attention as well.

4.1.3 Vehicles of interest

Recognizing and tracking vehicles of interest requires com-
puter vision technologies in the areas of vehicle detection,
classification, and recognition. Classification and recogni-
tion are often required at different degrees of granularity
for different applications, ranging from coarse (e.g., distin-
guishing small- versus large-size vehicles) to more detailed
vehicle type classification [e.g., sedan versus sport utility
vehicle (SUV) versus van], to the unique identification of
a vehicle (e.g., through recognizing the alphanumeric infor-
mation of a license plate).

A brief review of camera-based vehicle detection can be
found in Ref. 152, where methods based on technologies
such as fuzzy logic, contour matching, sensor fusion,
SVM, etc., are briefly discussed. In Ref. 153, Garg examined
various vehicle detection methods using image features such
as SIFT, principal component analysis–based, edge-based,
and Haar-like features. As expected, traditional machine
learning and image segmentation techniques can be adapted
to perform the “car versus noncar” segmentation task. The
choices of image features and classifiers, however, play an
important role in its performance. Motion and size cues
can often be utilized to improve computational efficiency
and robustness. Note that due to complications introduced

Fig. 10 Sparse reconstruction for anomaly detection: y is a test
trajectory vector; A is the training dictionary; and α is the sparse
reconstruction coefficient vector.

Table 4 Confusion matrices for the joint sparsity and single-class
support vector machine anomaly detection techniques on stop sign
intersection data. Columns indicate ground truth, and rows indicate
detected outputs.

Joint sparsity model150 Piciarelli et al.151

Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Normal 94.1 12.5 85.3 37.5

Anomaly 5.9 87.5 14.7 62.5
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by environmental conditions, e.g., shadow, occlusion, and
other factors, there are still many open questions for
researchers to explore.

The dominant technology used for vehicle classification
relies on the use of light curtains, which provide a 3-D profile
of a vehicle via line illumination and sensing in a direction
perpendicular to traffic flow.154 More recently, vision-based
methods are being explored due to their multifunction
capability and increasing prevalence of roadway cameras.
These techniques have attained different levels of class
granularity. The classification methods employed depend
greatly on the goals and conditions of the application.
Here, we highlight a few examples to introduce and review
the field. One popular class of approaches uses 3-D vehicle
models as templates for vehicle classification.155,156 In
Ref. 156, Leotta and Mundy use a generic but more detailed
3-D vehicle model that deforms to match a wide variety of
passenger vehicles. The model parameters are adjusted to
best align the 3-D representation with acquired images
by predicting and matching image intensity edges. Vehicle
class is determined by examining the fitted model parame-
ters. Experiments were performed for a five-class problem
(two-door sedan, four-door sedan, minivan, SUV, pickup
truck) and a simpler three-class problem (sedan, minivan/
SUV, and pickup). Their results showed that their method
outperforms methods using simpler deformable 3-D models
(e.g., see Ref. 155) for basic vehicle classification. Other
methods not employing 3-D models use heuristic rules
(size, aspect ratios, etc.) or supervised training. In Ref. 157,
Lai and Yung use a virtual loop concept to replace the func-
tionality of actual inductive loop detectors (ILDs) with video
analysis of motion vectors of the virtual loops. The under-
lying vehicle-type classification method is the same as
that used by ILD, which is a vehicle length–based approach
of looking at the one-dimensional signature of the output of
ILD. As a result, the classification capability is more limited
compared to the deformable template method of Ref. 156.
Vehicle shape and appearance have been used as features
for classifying SUVs, vans, pickup trucks, and cars from
aerial videos.158 Features based on edge points and modified
SIFT descriptors have been used as inputs to vehicle classi-
fiers in Ref. 159, where the authors show promising results
for classifying car versus minivan or sedan versus taxi (a sub-
class classification) with a supervised machine learning
approach.

The most popular approach for recognizing vehicles of
interest especially in law enforcement is license plate recog-
nition (LPR) since it uniquely identifies vehicles, except
those with illegal or inappropriate use of plates. Ideally,
given the alphanumeric information of a plate, detailed
vehicle information can be derived, such as type, make and
model, approximate color, etc. A thorough review of LPR
technologies is found in Ref. 160. There are generally
three basic steps: (1) plate localization, which detects the
region containing the license plate within the image; (2) char-
acter segmentation, which marks the boundaries separating
individual characters within the plate image; and (3) character
recognition.160 For the first two steps, Ref. 160 categorized
various methods based on the image domain, where the
algorithm involves, e.g., binary processing, gray-level
processing, color processing, etc. For the final step, two
categories are described in their discussion: classifier and

pattern/template matching. In addition, many applications
require identification of the originating jurisdiction (e.g.,
state or province). State-of-the-art LPR performance can
again be broken down by the three steps. For plate localiza-
tion, Ref. 160 reports results from a variety of publications,
with most methods achieving >90% localization accuracy.
For character segmentation, Ref. 160 states a minimum
license plate height requirement of 20 to 25 pixels for suc-
cessful results and remarks that most failures in the third
stage of character recognition are actually due to failed seg-
mentation. For character recognition, Ref. 160 reports results
from a variety of published techniques with performance
varying from 92 to 98%.

While there are currently many commercially available
LPR systems, and many of the seemingly encouraging
results mentioned above are reported under nominal or favor-
able conditions, much research continues to be conducted
on all three of the aforementioned steps to improve LPR
performance and robustness under a wide range of practical
situations. Recently, Refs. 140 and 161 proposed a classifier-
based approach for character recognition using SMQT
features and the SNoW classifier (described in Sec. 3.3)
to achieve robust performance under widely varying illumi-
nation conditions. Classification performance reported in
Ref. 140 is shown in Fig. 11. The results are shown in
terms of receiver operating characteristic (ROC) curves con-
veying the tradeoff between yield (percentage of characters
for which a conclusive decision is made) and accuracy (per-
centage of correct decisions). A given curve is generated by
sweeping a minimum threshold for the classifier margin that
must be exceeded for a decision to be deemed conclusive.
The SNoW technique in Ref. 140 is compared with another
state-of-the-art character recognition algorithm that employs
a nearest-neighbor data-driven approach162 on two license
plate designs from the states of Maryland and California.
We see from this plot that (1) performance can vary con-
siderably depending on the plate design; (2) the SNoW
technique exhibits superior performance over the nearest-
neighbor approach; and (3) at a yield of 95%, both methods
achieve >98.5% accuracy on both data sets.

A practical challenge in LPR is the tradeoff between the
two competing needs of large field of view (needed for appli-
cations such as traffic flow monitoring) and high spatial
resolution (needed for plate localization and character
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Fig. 11 Receiver operating characteristic curves for the SNoW clas-
sifier140 versus the data driven classifier162 for Maryland (MD) and
California (CA) license plates.
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recognition in LPR). A potential approach would be to lev-
erage the advances in superresolution from a series of images
to relieve the image resolution requirement in settings where
the camera must have a wide field of view. A recent approach
that partially addresses this problem computes a signature of
a license plate image and uses search-retrieval techniques to
compare the signature against a database of previously gath-
ered vehicle plate images.163 This method uses a similarity
learning technique to derive an optimal distance metric for
accurate and robust signature search and retrieval. Since it
does not depend explicitly on recognition of individual
plate characters, the resolution requirements can be some-
what relaxed. Note however that this system can only recog-
nize plates it has seen before (i.e., that are present in the
database) and therefore lends itself only to certain applica-
tions such as Amber Alert discussed in Sec. 4.1.1.

Yet another practical challenge in deploying an LPR sys-
tem is that due to the numerous imaging distortions encoun-
tered in camera capture of license plates, and due to the
significant variety of plate designs found in some countries
(e.g., USA), a very large number of images representing this
variety must be gathered in order to successfully train and
optimize the system. This can significantly increase the
time and cost of deployment. Reference 164 proposes a sol-
ution to this problem by generating synthetic license plate
images for training LPR. Synthetic images are designed
by overlaying characters designed with realistic plate fonts
on background blank plate images gathered from public
sources. These images are then subject to a series of imaging
distortions that have been systematically derived by analyz-
ing real images. Figure 12 compares synthetic and real cam-
era captures for a New York state license plate; Fig. 13 shows
three types of imaging distortions generated via simulation.

Experiments in Refs. 163 and 164 show that a large vol-
ume of synthetic images can be used to augment a small
training set of real plate images to produce excellent LPR
performance while significantly reducing the time and effort
in gathering training data.

In summary, there are two broad types of vehicle identi-
fication approaches: a nonunique identification/vehicle
classification and a unique identification via LPR. In many
applications, vehicle classification is sufficient. The higher
the granularity of classification, the more technical chal-
lenges need to be overcome. Current state-of-the-art154

uses the 3-D profile of a vehicle acquired by light curtain
sensors and yields 98.5% accuracy across 2.3 million
vehicles while performing vehicle classification to a fine
scale. There is still a large gap for video-based approaches
to accomplish a degree of performance equivalent to that
achieved by the light curtain approach. One alternative we
believe to be promising entails the extension of the 3-D
model work in Ref. 156 from single-view to multiview archi-
tecture. This would clearly close the performance gap

between video-based approaches and the state-of-the-art.
In practice, research questions such as what is the minimal
number of views needed, what would be their optimal con-
figuration, and how to make the system computationally effi-
cient need to be addressed. In the case of LPR techniques,
although the technologies are quite mature, there are still
many challenges in practice. The development of methods
with fast adaptation to a given set of requirements is
an important direction in real-world deployments. While
Refs. 163 and 164 are moving toward this direction, we
expect to see more formal domain adaptation techniques
from the machine learning literature being brought to bear
on this problem. Other interesting research directions
include internationalization, i.e., the ability to recognize
plates and characters across a wide variety of countries;
performing LPR from cameras mounted on a mobile plat-
form such as that done in police cars (see Sec. 4.2.3); and
recognition of other numerical identifiers such as the US
Department of Transportation number on commercial
vehicles. A standardized evaluation protocol for assessing
an LPR system would also be of great value for real-
world applications.

In addition to the applications described above, computer
vision technologies can be/have been applied to many other
transportation-related security applications. For example,
detection of hazardous material (hazmat) signs on vehicles
can help first responders take appropriate action in an emer-
gency situation. Surveillance cameras along with specialized
acoustic analyzers of .gunshots have served as shot trackers.
Many other examples are currently being pursued, and we
expect vision-based technologies for ITS will flourish for
years to come.

4.2 Law Enforcement
The description of violations in law enforcement applica-
tions is typically defined a priori and readily available for
system designers. This contrasts with security applications,
where the abnormal/incident behavior may not be clear and
needs to be learned. On one hand, this prior knowledge sim-
plifies the problem, while, on the other hand, accuracy, cer-
tainty, and identification are critical for law enforcement.
Speed enforcement is a prime example demonstrating the
need for very high accuracy. More details are discussed in
the following section. Technologies for LPR and sometimes
also for human identification are critical for law enforcement
since the correct violators need to be held responsible.Fig. 12 Real (a) versus synthetic (b) New York state plate.

Fig. 13 Simulated distortions: shadow (a), low light (b), camera
blur (c).
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4.2.1 Speed enforcement

Studies165–168 have shown a strong relationship between
excessive speed and traffic accidents, and the impact of
speed enforcement in reducing speeding.165,169–175 Consider
the following statistics on the impact of speeding: in the
United States, in 2005, 22 and 34% of passenger car and
motorcycle fatalities, respectively, involved speeding; the
economic cost of speeding-related crashes is estimated
to be $40.4 billion each year.166 Studies introduced in
Refs. 171 and 172 have shown that, in certain settings,
photo enforcement of speed has led to an average reduction
of speed leading to 21 and 14% reduction in accidents
involving severe collision and injuries, respectively. On
the other hand, there are also studies investigating the neg-
ative impact of photo enforcement, including privacy, valid-
ity, intention (e.g., camera enforcement may be perceived as
a revenue generator rather than for the good of the public),
etc. This is, however, beyond the scope of this paper.

Vehicle speed estimation is among the key traffic mea-
surements required in an ITS. It is relevant to traffic flow,
accident prediction, incident detection, etc. Common meth-
ods for speed measurement in transportation include use of
inductive loops, radar, lidar, and, more recently, video cam-
eras. There are several advantages that a vision system can
provide over the use of inductive loops or radar/lidar, while
presenting new challenges that need to be addressed.
Conceptually, it is fairly simple for a vision system to pro-
vide some measure of speed of an object once the object of
interest is properly detected, identified, and tracked. The
issue is the accuracy and precision of the measurement.
Although there exists a significant body of research on
applying computer vision technologies to traffic and traffic
flow measurements, only a very small fraction of published
research evaluates accuracy and precision of speed measure-
ment of an individual vehicle, which is critical for speed
enforcement applications.

A first requirement of a computer vision–based speed
measurement system is good performance of the vehicle
detection and tracking methods. Additionally, such a system
requires (1) an accurate camera calibration strategy that pro-
duces a geometric mapping for translating image pixel posi-
tions to real-world coordinates,176–184 (2) an understanding of
the impact of vehicle height on speed accuracy,179,184,185 and
(3) an accurate reference measurement system.186 The geo-
metric mapping is typically performed using a projective
matrix transformation.

Consider the work presented in Ref. 183 as one that intro-
duces both the approach and potential pitfalls associated with
manual calibration methods. In this paper, the calibration is
achieved by manually placing marks 10 m apart on the road-
way, identifying image pixel locations that contain the
marks, and then using the pixel location and mark location
data to construct the camera calibration mapping. A couple
of issues can arise with this approach. One consideration is
that manually placing easily identified marks on the road
may be impractical or costly, especially in high traffic
areas. Second, both the placement and the identification
of the location of the marks on the road need to be quite
accurate. A systematic 10 cm combined error in the mark
placement and pixel location for a 10-m spacing between
marks would translate to a 1% bias error in subsequent speed
measurements. Finally, the camera may move or change field

of view over time (intentionally or unintentionally). Hence,
camera recalibration may be needed periodically.

Although model-based camera calibration techniques187

have been known for a long time, it is difficult to apply
these generic methods to roadside settings.176 Next, we
review a few example model-based calibration methods
from the perspective of impact on various aspects of
speed measurement, including accuracy. First, we discuss
traffic flow vision applications, where the goal is measure-
ment of average speed and vehicle counting rather than law
enforcement. We refer interested readers to Ref. 176, where a
thorough discussion and analysis of camera geometric map-
ping calibration methods for traffic monitoring are presented.
The approaches taken by Refs. 177 to 182 focus on the use of
vanishing points and/or heuristic knowledge for deriving the
projective matrix transform. The vanishing point(s) are iden-
tified directly from the scene. Hence, they can be automati-
cally updated as the scene changes, for example, after pan,
zoom, or tilt operations. Furthermore, scene changes can be
detected by analyzing the motion activity within the scene,178

which makes the calibration steps fully automated and
dynamic. This process may involve a learning stage,
which would require that the scene changes are gradual.
More specifically, in Ref. 177, the heuristic knowledge
used includes a scale factor that varies linearly as a function
of the traveling direction, which reduces the problem to a
single dimension with known vehicle length distributions.
The use of a known vehicle length distribution yields reason-
able accuracy for average speeds duration of 20-s intervals
(4% difference from inductive loop methods); however, the
accuracy of individual vehicle speed estimates is quite poor.
It is noted by Ref. 177 that the effect of shadows on centroid
tracking is the main contributor for inaccuracies >10%. In
Ref. 179, lane boundaries and then vanishing points are
detected using the motion activity map. The histogram of
average speed to across 20-s intervals shows a bias of 4
to 8 mph compared to inductive loop measurements. Note
that unlike Ref. 177, where blob centroids are used for
speed estimation, the lowest edge of the vehicle blob is
used for speed calculation in Ref. 179. In Ref. 180, camera
calibration is achieved by a two-step process: a technique
to remove perspective effects and a correlation technique
to establish the necessary scale factor. The perspective is
derived by detecting highway boundaries in the image
and assuming the highway is straight. The scale factor is
determined by detecting the painted strips on the highway
and assuming that the length is known and constant.
Accuracy results are not reported.

Law enforcement is primarily concerned with the speed of
individual vehicles, and here accuracy of the measurement
becomes a critical concern. Accuracy requirements can be
as tight as �1 mph or �1%. In Ref. 181, vanishing points
and the assumption that the mean vehicle width is 14 feet are
used to construct a camera calibration and resulting projec-
tive matrix transform. The reported inaccuracy of the esti-
mated speed of an individual vehicle is <10%, a figure
somewhat below that achieved when lane boundaries are
used for camera calibration.179 Note that the improvement
in speed estimation accuracy may not necessarily be due
to differences in the calibration procedure; instead, it may
be due to the use of a vehicle tracking method that is insen-
sitive to shadows. In Ref. 182, the vanishing point is first
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detected from the road edges of the scene. The camera
calibration mapping is then derived in a manner similar to
methods discussed earlier. The reported inaccuracy of the
average speed of three test vehicles with 10 runs each is
4%. In Refs. 183 to 185 and 188, the camera calibrations
are all performed based on the known real-world coordinates
of some form of landmarks (manually placed or available
from the scene). The reported inaccuracy of the speed
estimates for individual vehicles ranges from 1.7 km∕h,
�3 km∕h, to �5 km∕h for five tested cars with speeds rang-
ing from 13 to 25 km∕h.

Consider an accuracy issue related to the height of a
vehicle image feature being tracked and the dimensionality
of the image acquisition scenario. As shown in Fig. 14, a
camera views a vehicle from an angle, and a tracking algo-
rithm tracks one or more features in the acquired vehicle
image. Speed on the road surface is the desired measure,
while the feature being tracked (e.g., edges, blob centroid,
etc.) is generally above the road at an unknown height. It
is usually not possible to determine the height of the feature
being tracked because a single camera image is a 2-D rep-
resentation of a 3-D phenomenon, which introduces map-
ping ambiguities. The calibration of 2-D pixel locations to
road locations assumes a given feature height, such as the
road surface. Speed measurement based on tracked features
at other heights will be inaccurate due to the discrepancy
between assumed and real feature heights. The issue is
less severe given that it is known that the vehicle travels
on the road surface, and that vehicle speeds are calculated
based on features that are the lowest edges or points of a
motion blob (closest to the ground plane)179,184,185 rather
than the centroids of a motion blob.

The height of the tracked feature can be estimated through
stereo imaging, which solves the dimensionality problem.
While commercially available stereo cameras are becoming
available for photo enforcement, very little scientific litera-
ture has appeared on the accuracy of this approach. One
example is Ref. 189, where particle filtering is used for stereo
object tracking. This method incorporates both 3-D and
2-D information into the filtering state so that the 3-D cor-
respondence is utilized for generating each particle, and the
projection errors are modeled. Additionally, it extracts envi-
ronmental constraints from the video and integrates them
into the dynamics model, thereby reducing both the dimen-
sionality and uncertainty of the system dynamics and thus
improving the accuracy of speed measurement. Based on
results on both synthetic and realistic video sequences,
this approach shows excellent accuracy with errors smaller
than �1 mph across all trials. Finally, a typical accuracy
requirement for speed enforcement systems can be as
tight as �1 mph or �1%. It is thus necessary to have an
accurate reference measurement system that is at least an
order of magnitude more accurate and precise. An example
of research on this topic is found in Ref. 186.

In summary, although individual vehicle speed is a
straightforward output from most computer vision systems,
there is an accuracy gap for single-camera systems. While
stereo cameras192,193 for photo enforcement are becoming
widely available, there are very few scientific publications
on calibration and practical accuracy of 3-D systems.
There are also potential issues with a lack of accurate refer-
ence measurements. In addition to 3-D solutions, another
common approach to photo enforcement of speed has

Fig. 14 Illustration of an accuracy issue related to tracked vehicle image feature height and the dimensionality of image acquisition.
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been through use of radar/lidar for speed and a camera for
vehicle identification and evidence recording.194

4.2.2 Enforcement at road intersections

Camera-based law enforcement at road intersections195

includes detection of red-light violations, illegal turns, and
“blocking the box” incidents.196 Among these, most attention
has been focused on detecting red-light violations due to
their strong correlation with accidents. Most common red
light camera systems197,198 operate under the principle
whereby the camera is triggered by an event issued by a rea-
soning algorithm having access to the signals from the traffic
light control system and the ILD at the stop line. The role
of the camera is mainly one of evidence gathering and
vehicle identification; thus the computer vision technologies
involved are mainly in the area of LPR. In 2001, Ref. 199
proposed a fully vision-based method, where the state of the
traffic light is automatically detected and tracked via image
and video processing algorithms, and vehicle detection at a
virtual stop zone is used to determine red-light violations.
This removes the need of an ILD and the communication
needed in other common methods. In Ref. 200, a similar
goal is achieved with different computer vision techniques,
which involve vehicle detection at predefined regions fol-
lowed by thresholding of the speed of the detected vehicle.
There is, however, no discussion about how the traffic light
states are determined in this work.

Given that computer vision technologies such as vehicle
detection, vehicle tracking, vehicle trajectory analysis,
anomaly detection, etc., have been developed, we expect
to see the deployment of additional law enforcement appli-
cations such as detection of illegal turns, “blocking the box”
incidents, and jay walking.

Unlike speed enforcement, where a numerical output of
an estimated vehicle speed with a certain absolute accuracy
is required, the output for this set of applications is binary:
either a violation or not a violation is detected to have
occurred. In this case, the performance of the system can
be assessed by a confusion matrix. In practice, a human
in the loop is often required. As a result, the system
would be configured to be biased toward allowing more
false positives, which would eventually get ruled out by a
human operator.

4.2.3 Mobile enforcement

Another interesting set of applications involves cameras
mounted on a mobile platform, such as a police car, a parking
enforcement vehicle, or a school bus, in contrast to cameras
mounted on fixed locations (e.g., a utility pole). Depending
on the application, different mobile platforms (and corre-
sponding computer vision techniques) are needed. Many
of the technologies developed for fixed cameras are appli-
cable here. Camera mobility offers advantages such as flex-
ibility and better coverage of sites at a lower cost, while new
challenges may arise due to the typically unknown camera
motion patterns. The mobile platform on which the camera
is mounted may also impose limitations and constraints on
the camera field of view relative to the fixed camera scenario.
For example, the height of a camera mounted on a police car
is typically lower than that of a camera mounted on a pole.
While these constraints may not necessarily be impediments,
they do call for different sets of problems to be solved.

As an example of mobile enforcement, a camera mounted
on a police car is typically used for the task of vehicle iden-
tification (with vehicle owner identification as a possible
additional output), which may require the use of LPR tech-
nologies as discussed in Secs. 3 and 4. Another possible
application is parking enforcement, as addressed by the com-
mercial product autoChalk™,201 which tracks parking space
usage via a combination of LPR technologies for unique
vehicle identification (in cases where the license plate is
not occluded) and image processing technologies for vehicle
signature matching. Since signature matching through images
without a license plate cannot uniquely identify a vehicle,
additional information such as location, time, human verifi-
cation, etc., may be used. Yet another example is the use
of cameras for school-bus stop enforcement as addressed
by the CrossingGuard® School Bus Stop Arm Violation
Enforcement System. CrossingGuard® records videos of
potential violations and provides an enforcement process that
requires a human to verify the occurrence of the violation.
Computer vision techniques such as motion/object detection
can be used to fully automate the process in the future.

In summary, mobile solutions offer greater flexibility and
wider coverage at a lower cost. Many of the techniques
developed for stationary solutions can be applied to mobile
platforms provided the additional challenges introduced by
unknown motion patterns in the imaging and a different set
of limitations in the camera field of view can be resolved.

In addition to these examples, new applications are being
rapidly developed due to the richness of information
acquired with video cameras compared to other (e.g., mag-
netic and ultrasonic) roadway sensors. For example, parking
law enforcement applications are being built into parking
occupancy detection camera systems.202,203 Reference 203
describes the use of computer vision for the detection of
parking in exclusion zones, short-term parking violations,
and parking boundary violations.

5 Trends and Challenges
The need for improvement in safety, security, and efficiency
of transportation infrastructure continues to attract a tremen-
dous amount of innovation and change. In this paper, we
have surveyed the current advances in computer vision
related to transportation systems. We believe the following
trends to be the key influencers in major innovation in the
application of computer vision in transportation:

• While many strides have been made toward reducing
traffic fatalities, the rapid progress in ADAS and
related technologies will have a major effect on further
reducing traffic deaths. Ongoing research in this area
will find its way into production systems, and some
key elements will soon be mandated for inclusion in
production vehicle platforms. These technologies
will contribute to a drive toward initiatives such as
zero deaths from traffic accidents.

• Real-time traffic information, rail and roadway condi-
tions, parking availability data, and all related ele-
ments, combined with the ability to optimize the
traffic network based on reliable real-time data, will
drive significant improvements in efficiency of the
available infrastructure. With vehicles as floating sen-
sor platforms equipped to report on real-time traffic
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and road conditions, integrating with vehicle-to-
vehicle and vehicle-to-infrastructure communication,
all users of the transportation infrastructure will have
an opportunity to make more optimal travel decisions.
Vehicles as sensor platforms will contribute to crowd-
sourced information layers that will enhance current
navigation and guidance systems. Augmented reality
products will effectively leverage these high-quality,
real-time data feeds.

• Related to the aforementioned observations, another
trend will be to place increased intelligence into the
cameras themselves. The imaging devices of the future
will not simply relay images or videos to a central
server for analysis, but will rather act as smart, self-
aware sensors that extract relevant analytics (e.g.,
a vehicle’s speed or an anomalous incident) from the
captured video and report these to a central infrastruc-
ture, or to other cameras or vehicles.

• More equitable user fees for road use through cost-effi-
cient detection of actual usage patterns will drive the
next wave of road-usage charging. This will include
advancements in managed lanes (HOV/HOT pro-
grams), congestion and cordon fee programs, and co-
operation between transit, parking, and road charging
systems.

• The highly interconnected contextual awareness of
both vehicles and the transportation infrastructure
will provide a surveillance capability for picking out
individual vehicles of interest with faster turnaround
and higher precision.

There are two major challenges in the successful adoption
of computer vision in solving these transportation problems.
Many algorithms today report high performance only in cer-
tain restrictive scenarios and do not generalize well to real-
istic conditions. The first challenge therefore is in developing
algorithms that exhibit high accuracy and reliability across
a wide variety of environmental factors, including weather,
illumination, capture geometry, traffic behavior, etc. The
second challenge is in implementing these algorithms within
the available infrastructure in a cost-efficient manner. To go
from computer vision and imaging to visual intelligence
within the vehicles and infrastructure will require a relentless
attention to driving down the cost of available technology.
The computing power available today within the transporta-
tion network and within the vehicles is not always sufficient
to execute existing algorithms with acceptable speed;
hence, more efficient and powerful platforms are needed
for wider adoption of some of the advancements discussed
above. Indeed Moore’s law and associated hardware
advances will over time enable increasingly sophisticated
algorithms to execute with acceptable computational
time, memory, and storage. Implementation on advanced
computing platforms such as multicore processors and
graphics processing units will also be an active area of
exploration.
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