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Abstract. Foreground segmentation in video frames is quite valuable for object and activity recognition, while
the existing approaches often demand training data or initial annotation, which is expensive and inconvenient.
We propose an automatic and unsupervised method of foreground segmentation given an unlabeled and short
video. The pixel-level optical flow and binary mask features are converted into the normal probabilistic super-
pixels, therefore, they are adaptable to build the superpixel-level conditional random field which aims to label
the foreground and background. We exploit the fact that the appearance and motion features of the moving
object are temporally and spatially coherent in general, to construct an object-like pool and background-
like pool via the previous segmented results. The continuously updated pools can be regarded as the “prior”
knowledge of the current frame to provide a reliable way to learn the features of the object. Experimental results
demonstrate that our approach exceeds the current methods, both qualitatively and quantitatively. © The Authors.
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1 Introduction
Video foreground segmentation plays a prerequisite role in a
variety of visual applications such as safety surveillance1 and
intelligent transportation.2 The existing algorithms usually
use supervised or semisupervised methods and achieve
satisfying results. However, the performances are still limited
when they are applied for unsupervised and short videos,
because the supervised methods usually demand many
training examples that are expensive to manually label.
Furthermore, the training examples cannot cover all the con-
ditions and need to retrain the new examples to improve
the generalization. Some semisupervised methods require
accurate object region annotation only for the first frame,
then they exploit the region-tracking methods to segment
the rest of the frames. However, many visual applications
like safety surveillance demand intelligent and unattended
operations, which make the initial annotation impractical.
The available video frames may be insufficient sometimes
since the objects can move rapidly into and out of the visual
field when they are near the camera.

There has been a substantial amount of work related to
foreground segmentation. Classical segmentation methods
that operate at the pixel level are often based on local features
like textons,3 then they are augmented by Markov random
field or graph-cut based methods to gain the refined
results.4,5 Furthermore, some new methods of this type
regard the meaningful superpixels as the basic units instead
of the rigid pixels to get better results,6–10 because super-
pixels are efficient in practice and more robust to noise than
pixels, and work well for representing objects as well. For

instance, Tian et al.6 propose two superpixel-based data
terms and smooth terms defined on the spatiotemporal super-
pixel neighborhood with a shape cue to implement the
segmentation. Their method can handle arbitrary length
video sequences although it demands that the first frame be
manually labeled. Shu et al.9 apply a superpixel-based bag-
of-words model to iteratively refine the output of a generic
detector, then an online-learning appearance model is
exploited to train a support vector machine and to achieve the
exact objects using conditional random field (CRF). How-
ever, it requires a mass of various examples to train the clas-
sifier, and it is not well adapted to short videos.

Perhaps the work that is related most to ours is that of
Schick et al.8 They convert the traditional pixel-based segmen-
tation into a probabilistic superpixel representation and inte-
grate the structure information and similarities into Markov
random field (MRF) to improve the segmentation. The
shape of the object in the given foreground segmentation is
improved by their probabilistic superpixel Markov random
field (PSP-MRF) method. Moreover, it also reduces the
noisy regions and improves recall, precision, and F-measure.
However, it stringently depends on the binary mask (see
Sec. 3.3). For instance, if the given binary mask is quite
poor because of the cluttered background, the performance
will rapidly decline. In addition, full use is not made of the
local features and environmental information to achieve more
robust results.

In order to improve the performance of unsupervised and
short video segmentation, we proposed an online unsuper-
vised learning approach inspired by Ref. 9. The intuition
is that the appearance and motion features of the moving
object vary slowly frame by frame in a typical video.
According to the temporal and spatial coherence, we can*Address all correspondence to: Xing You, E-mail: simit52@163.com
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exploit the segmented result of the previous frame to provide
valuable cues for the current segmentation.

This paper aims to segment the moving foreground from
the unlabeled and short video in an unsupervised way with-
out prior knowledge. The overview of our approach is illus-
trated in Fig. 1. The main contributions of our work are listed
as follows: (1) The pixel-level optical flow and binary mask
features are converted into the normalized probabilistic
superpixels, which fit very well for the CRF. (2) Because of
the temporal and spatial coherence of appearance and motion
features of the moving object, we leverage the previous seg-
mented result to build an object-like pool and background-
like pool, which serve as the “prior” knowledge of the cur-
rent segmentation. The continuously updated pools provide a
reliable and continuous way to learn the features of the
object. The proposed algorithm has been validated by several
challenging videos from the change detection 2014 dataset,
and experimental results demonstrate that our approach out-
performs the other methods both in accuracy and robustness,
even when the basic features suffer from great interference.

The rest of this paper is organized as follows: Sec. 2
presents our detailed approach. Experimental results are
given in Sec. 3 and conclusions are discussed in Sec. 4.

2 Our Approach
Since we have no prior knowledge about the unlabeled
video, we actually know nothing about the object at first:
we do not know its type, size, moving direction, and so
on. Similarly, the scenario is also unpredictable: it may suffer
from swaying trees, illumination change, bad weather, shad-
ows, and so on. Therefore, an unsupervised and efficient
approach should be developed because of the limited infor-
mation in the short video.

First, the optical flow field is regarded as the initial detec-
tor to extract the moving region, which is actually a coarse
bounding box. Second, the pixel-level optical flow and
binary mask features are converted into the normalized prob-
abilistic superpixels. Combining the normalized probabilistic
superpixels with the foreground likelihood that is generated
by the object-like pool and background-like pool, we build a
superpixel-based CRF model to provide a natural way to
learn the conditional distribution over the class labeling.

Afterward, the graph-cut based method is adopted to achieve
the foreground segmentation. Last, an exceptional handling
mechanism is applied to avoid error accumulation in the case
of abnormal events.

2.1 Superpixel Segmentation
Superpixels11,12 have become a significant tool in computer
vision. They group pixels into meaningful subregions instead
of rigid pixels which can greatly reduce the complexity of the
task in image processing. What is more, the superpixels have
uniform information in color and space and adhere well to
the contour of the object. So far they have become the basic
blocks of many computer vision algorithms, such as object
segmentation,9 depth estimation,13 and object tracking.14 As
a kind of middle-level feature, superpixels both increase the
speed and improve the quality of the segmented results.

Simple linear iterative clustering (SLIC)15 is an efficient
method of superpixel segmentation, which is also simple to
implement and easy to apply in practice. In this paper, we set
a proper size of superpixels (8 × 8 in all the experiments)
and segment the image with the SLIC algorithm. Then we
acquire the table of the labeled superpixels, the seeds of the
superpixels, and the number of the superpixels. Specifically,
the table shows the label values of all the pixels and the maxi-
mum value represents the total number of the final superpix-
els. Note that the exact number of the segmented superpixels
is usually not equal to the given number because some small
superpixels are integrated into the larger ones. The seeds of
the superpixels are used to judge the neighbor information
since the labeled values of superpixels are not in order.

2.2 Probabilistic Superpixels
The pixel-level processing is vulnerable to unpredictable
noise and it suffers from a heavy calculation burden as well.
In order to achieve a robust and efficient segmentation, we
operate at the superpixel level in the following steps.
According to Ref. 8, a probabilistic superpixel gives the
probability that its pixels belong to a certain class, so it fits
well into the probabilistic frameworks like CRF, as we will
show later.

Though without prior knowledge, the pixel-level optical
flow and binary mask can be converted into probabilistic

Fig. 1 The overview of our approach: (a) input sequential frames, (b) moving region, (c) binary mask,
(d) superpixel-level optical flow, (e) foreground likelihood, (f) segmented results, (g) object-like pool, and
(h) background-like pool.
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superpixels to measure the foreground likelihood. Let B be
the pixel-level binary mask and sp a superpixel with pixels
p ∈ sp and jspj its size, so the likelihood of the superpixel-
based binary mask to construct the object is defined as8

LbinaryðspÞ ¼
P

p∈spBðpÞ
jspj : (1)

The optical flow of each superpixel is represented by the
average optical flow of the inside pixels. Then the likelihood
of a superpixel sp (let ~sp be its optical flow vector) to form
the foreground based on optical flow is defined as

Lflowð ~spÞ ¼ cosh ~sp; ~ri · k ~spkk~rk ; (2)

where h ~sp; ~ri denotes the angle between the vectors ~sp and ~r.
The reference optical flow vector ~r is defined by the mean
optical flow of all the superpixels in the moving region.
Finally, the superpixel-level optical flow and binary mask
are normalized to represent the foreground and background
probabilities by the following equations:

Pfg ¼ α · Lflow þ ð1 − αÞ · Lbinary; (3)

Pbg ¼ 1 − Pfg; (4)

where α ∈ ð0;1Þ represents the tradeoff between the features
of the binary mask and the optical flow.

2.3 Superpixel-Based Conditional Random Field
CRF16 is a class of statistical modeling methods widely
applied to computer vision. According to the result of super-
pixel segmentation, the foreground objects are usually over-
segmented and are consisted of more than one superpixel.
Therefore, it is essential to cluster and label the superpixels
based on their features. Fortunately, CRF provides a natural
way to incorporate superpixel-based features into a single
unified model3 to learn the conditional distribution over the
class labeling.

Let GðS; EÞ be the adjacent graph of superpixels spi
(spi ∈ S) in a frame, and E is the set of edges formed
between pairs of adjacent superpixels in the eight-connected
neighbors. Let PðcjG; wÞ be the conditional probability10 of
the set of class assignments c given the adjacent graph
GðS; EÞ and a weight w

− log½PðcjG;wÞ� ¼
X
spi∈ S

ΨðcijspiÞ

þ w
X

ðspi; spjÞ∈E

Φðci; cjjspi; spjÞ; (5)

where Ψð·Þ and Φð·Þ represent the unary potential and pair-
wise edge potential, respectively.

The unary potential Ψð·Þ defines the cost of labeling
superpixel spi with label ci, and it is represented as follows:

ΨðcijspiÞ ¼ − log½Pfgðci; spiÞ�: (6)

The relationship between two adjacent superpixels spi
and spj is modeled by the pairwise potential4 Φð·Þ

Φðci; cjjspi; spjÞ ¼ ½ci ≠ cj� expð−βkci − cjk2Þ; (7)

β ¼ ð2hkci − cjk2iÞ−1jðspi; spjÞ ∈ E; (8)

where ½·� denotes the indicator function with values 0 or 1,
kci − cjk2 is the L2 norm of the color difference between two
adjacent nodes in LAB color space, and h·i is the expectation
operator.

The conditional probability can be optimized by graph
cuts.17 Once the CRF model has been built, we minimize
Eq. (5) with the multilabel graph-cuts18–20 based on an
optimization library10 using the swap algorithm. This is
quite efficient since the CRF model is defined on the super-
pixel-level graph.

2.4 Pools Construction
Now the superpixels are classified into two clusters: fore-
ground and background. In order to learn the features of
the object from the segmented result, the superpixels belong-
ing to the foreground and background are separately selected
to construct the object-like pool ot−1 and the background-
like pool bgt−1

ot−1 ¼ fspig; spi ∈ foreground; (9)

bgt−1 ¼ fspjg; spj ∈ background; (10)

where ot−1 and bgt−1 are the independent object-like pool
and background-like pool that are generated from the seg-
mented result of the ðt − 1Þ’th frame. The color distribution
and optical flow of each superpixel within the pools have
already been recorded. Based on the temporal and spatial
coherence of appearance and motion features, the real object
in the next frame should be similar to the previous segmented
foreground for both color and optical flow. Therefore, the
two pools can be regarded as the “prior” knowledge for
the object in the next frame. By comparing the features of
the “new” superpixels in the current frame and the “old”
superpixels in the two pools, we assign each “new” super-
pixel a likelihood of its belonging to the foreground.

2.5 Foreground Likelihood
Based on the segmented result of the previous frame, the
object-like pool ot−1 formed by the ðt − 1Þ’th frame is
achieved. As discussed above, ot−1 can be regarded as the
“prior” knowledge of current frame t, hence the key features
about the object can be learned. Let spti be the i’th superpixel
in frame t and spt−1k (spt−1k ∈ ot−1) be one of the nearest Mk
neighbors of spti. The similarity to the object about spti is
denoted as

StoðsptiÞ ¼
1

Mk

X
spt−1k ∈Nðspt

iÞ
Hðspt−1k Þ · HðsptiÞT

· exp

�
−
Dð ~spt−1k ; ~sptiÞ

η

�
; (11)

where Hð·Þ and Dð·Þ are the histogram distribution and the
Euclidean distance between optical flow vectors, respectively.
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The optical flow vector of spti is denoted as ~spti and η is the
expectation of Dð·Þ.

Similarly, we repeat the aforementioned procedures with
the background-like pool bgt−1 and obtain the background
similarity Stbg, so the likelihood of a certain superpixel in
frame t belonging to the foreground should be

Lt
fg ¼ Sto∕ðSto þ StbgÞ: (12)

The comprehensive probability of the superpixels to form
the foreground is represented as

Pfg ¼ β · Lflow þ γ · Lfg þ ð1 − β − γÞ · Lbinary; (13)

where β and γ weight the three features. β; γ ∈ ð0;1Þ
and ðβ þ γÞ ∈ ð0;1Þ.

Then we jump to Sec. 2.3, where Pfg is calculated by
Eq. (13) instead of Eq. (3). Just as before, a new super-
pixel-based CRF model is built and a new segmentation
is implemented by graph cut.

2.6 Exception Handing
The object-like pool works well most of the time, and the
segmented results will theoretically be improved frame by
frame. However, when the previous segmented foreground
is mixed with some noise, it will have a negative effect
on the object-like pool. Furthermore, the error will be
accumulated in the current segmentation based on the inac-
curate object-like pool, so the vicious circle occurs. This is
most likely to happen from the first initial segmentation
because the initially segmented result is coarse in general.
Therefore, some measures should be taken to prevent the
error accumulation.

Let Rt
n be the mean ratio of the number of superpixels in

the object-like pool from frame ðt − nÞ to frame t

Rt
n ¼

1

n

Xn
i¼1

Nt−iþ1
sp

Nt−i
sp

; (14)

whereNt
sp represents the number of the foreground superpix-

els from frame t. Therefore, Rt
1 is the ratio of the foreground

superpixels from frame ðt − 1Þ to frame t. Let R be the set of
the normal ratios. Then the state of the object-like pool is
represented as

state¼
�

normal;Rt
1 ∈ R; if Rt

1∕Rt−1
n ∈ ð1− λ;1þ λÞ

abnormal;Rt
1 ∈= R; others

.

(15)

The parameter n (n ¼ 3 recommended) denotes the num-
ber of previous reference frames, and the parameter λ
(λ ¼ 0.2 in our experiments) is the offset of the floor and
ceiling bounds, respectively.

Once the state of the object-like pool is abnormal, the
exception handling is activated. Then, we discard the object-
like pool and the background-like pool and reinitialize the
foreground likelihood based on Eq. (3) instead of Eq. (13).
The exception handling mechanism is quite effective to avoid
error accumulation.

3 Experimental Results
Our algorithm is evaluated by several challenging datasets:
“bungalows,” “twoPositionPTZCam,” “highway,” “fall,”
“snowFall,” and “blizzard.” They are from the Change
Detection 2014 dataset and provide a range of running
out of sight, direction change, shadow, dynamic background,
partial occlusion, bad weather, and similar color. The pro-
posed algorithm (ours) is compared with a binary mask
(BM), ours-shortcut (ours-SC), and PSP-MRF algorithms.8

Note that the ours-SC algorithm is short of the object-like
pool and background-like pool that provide “prior” informa-
tion for the next segmentation. In addition, only a few
sequential frames (less than 25 in all the experiments) are
chosen to run our unsupervised algorithm, because we do
not need huge frames to build and update the background
model or to serve as the training frames. In addition, we
only pay attention to a single rigid moving object with the
motionless camera in our experiments.

3.1 Qualitative Evaluation
The dataset provides various noises: “bungalows” shows the
condition where the moving object is running out of the cam-
era’s visual field, so several frames only capture a part of
the object. In the “twoPositionPTZCam,” the object contin-
uously changes its moving direction around the corner. The
car in “highway” suffers from shadows from the upper trees,
and “fall” presents the dynamic background of the swaying
leaves and the partial occlusion from the middle tree. In addi-
tion, a mass of the snow is falling down in the “snowFall,” in
very bad weather. In “blizzard,” the small car has a similar
color as the snowy background.

Figure 2 shows the qualitative results of ours, ours-SC,
PSP-MRF, and ground truth. BM results are not drawn
because they are mostly fragmentary which will make the
results cluttered. According to the visual evaluation, the
PSP-MRF method performs the worst on average because
of the incomplete and even fragmentary segmentations.
Furthermore, ours-SC achieves better results than PSP-MRF,
although it still lacks some detailed components of the
object. By learning the object-like pool and background-
like pool, our approach outperforms all the compared meth-
ods in terms of robustness and completeness.

3.2 Quantitative Evaluation
The performances of different methods are evaluated by two
measures: F-measure and percentage of wrong classification
(PWC). F-measure is the harmonically weighted balance of
precision and recall.21 F-measure and PWC are specifically
defined as

F-measure ¼ 2 ×
Precision × Recall

Precisionþ Recall
; (16)

PWC ¼ FNþ FP

TPþ TNþ FPþ FN
; (17)

where TP, TN, FP, and FN are abbreviations for true positive,
true negative, false negative, and false negative, respectively.
The detailed quantitative performances are shown in Fig. 3.
Although ours-SC shows comparatively good results in
“snowFall” and “blizzard,” it sometimes produces terrible
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Fig. 2 Visual segmentation results: (a) bunglows, (b) twoPositionPTZCam, (c) highway, (d) fall, (e) snow-
fall, and (f) blizzard. The results of ours, ours-SC, PSP-MRF, and ground truth are respectively repre-
sented by red, green, blue, and yellow curves.
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results (see the result of “fall”). We conclude that it is not
robust and neither is the PSP-MRF. Above all, the average
scores of our method in terms of F-measure and PWC per-
form the best compared with the others.

3.3 Impact of Binary Mask
Binary mask is one of the basic cues which is exploited by
PSP-MRF, ours-SC, and ours. Specifically, it makes up the
probabilistic superpixels in the PSP-MRF and occupies a
weighted part in both ours-SC and ours, so their results
are closely related to the binary mask. In the implementation
of the binary mask, we use the temporal difference method.
Although it is simple and sensitive for detecting changes, it
has poor antinoise performance and outputs an incomplete
object with “ghosts” (see the rapidly descending magenta
line in “bungalows” in Fig. 3).

In Fig. 3, it is easy to see that the blue PSP-MRF line has
a certain positive correlation with the magenta BM line.
According to Ref. 8, the binary mask directly determines
the unary term, which captures the likelihood of superpixels
belonging to the foreground. As a result, the performance
of PSP-MRF gets worse when the binary mask goes bad.
Furthermore, ours-SC method fuses the optical flow and
binary mask together, so its performance is partly influenced
by the binary mask. Moreover, with the object-like pool and
background-like pool, our method is only slightly influenced
by the binary mask even when it goes bad (see red line

in “bungalows,” “twoPositionPTZCam,” and “blizzard” in
Fig. 3). Overall, the proposed algorithm is the least sensitive
to the performance of the binary mask.

3.4 Impact of Optical Flow
Similar to the binary mask discussed previously, optical flow
constitutes one of the elements of ours-SC and ours.
However, it is vulnerable to noise that may be generated
from the illumination change or an area with the same
color. For example, in the “fall” dataset of Fig. 3, the reflec-
tion of the ground increases the error of the optical flow and
the green line goes bad quickly even though the binary mask
is not so bad. In contrast, our algorithm remains the best
under this condition. Similar to the binary mask, the pro-
posed algorithm is also the least sensitive to the performance
of the optical flow.

3.5 Effectiveness of Object-Like Pool
To further evaluate the effectiveness of our object-like pool,
a comparison is conducted between the method with (ours)
and without the object-like pool (ours-SC). According to the
performance in Fig. 3, our proposed algorithm achieves the
smoothest and highest F-measure curves and the least PWC
on average, while the curves of ours-SC fluctuate heavily and
perform worse than ours. The reason is that the object-like
pool provides a reliable and continuous way to propagate the

Fig. 3 Performance comparison of different methods. (a) the quantitative result of bunglows, (b) the
quantitative result of twoPositionPTZCam, (c) the quantitative result of highway, (d) the quantitative result
of fall, (e) the quantitative result of snowfall, and (f) the quantitative result of blizzard.
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object against the noise from other features. Besides, the
details of the objects with our algorithm can still be improved
even when ours-SC has already achieved good results, as
with the performances of “snowFall” and “blizzard” as
shown in Fig. 3. In brief, the proposed method with an
object-like pool achieves more robust and accurate results
than the methods without the object-like pool.

3.6 Impact of Parameters Selection
To study the sensitivity of parameter selection, different
parameters of α, β, and γ are chosen. Taking the typical “bun-
galows” as an example, we calculate the segmented results
based on three groups of parameters and the performance is
illustrated in Fig. 4. We call the “bungalows” typical because
the last two frames have achieved comparatively satisfying
optical flows but terrible binary masks, which are balanced
by α, β, and γ. According to the F-measure curves in Fig. 4,
the last two points of ours-SC descend quickly with the
increasing weight of the binary mask. However, our approach
still maintains an excellent performance even while being
faced with the awful binary mask. Therefore, our approach
is more robust than ours-SC in terms of the parameters.

3.7 Comparison of Computational Complexity
The computational complexity is introduced to make a sci-
entific comparison of the time cost in different approaches.
We first establish the notations used.

1. Let H and W be the height and width of the video
frame.

2. Let h and w be the height and width of the moving
region.

3. Let K be the total number of the superpixels.
4. Let S be the number of the pixels between two adja-

cent seeds of the superpixels.
5. Let T be the iterations of superpixel segmentation in

the SLIC method.
6. Let L be the length of the search range in the SLIC

method.
7. Let N be the number of the neighbors described

in Eq. (11).

According to the detailed algorithm of SLIC, it’s running
time is OðwhTL2∕KÞ. We set T ¼ 10 and T ¼ 3 for the
realization of SLIC in all the experiments, and K is generally
larger than 100. Therefore, we have OðwhTL2∕KÞ ≤
OðwhÞ < OðWHÞ. The proposed object-like pool and back-
ground-like pool cost OðNKÞ running time in total, in
which we choose N ¼ 9 as the nine-connected neighbors

Fig. 4 Performance comparison of different parameters. (a) High weight for optical flow and low weight
for binary mask. (b) Equal weights of optical flow and binary mask. (c) Lowweight for optical flow and high
weight for binary mask.

Table 1 Computational complexity of different methods.

Method Computational complexity

Binary mask (BM) OðWHÞ

PSP-MRF OðwhTL2∕K Þ þOðWHÞ ¼ OðWHÞ

Ours-shortcut
(ours-SC)

OðwhTL2∕K Þ þOðWHÞ þOðK Þ ¼ OðWHÞ

Ours OðwhTL2∕K Þ þOðWHÞ þOðK Þ þOðNK Þ ¼
OðWHÞ
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in Eq. (11). Since the features of the binary mask and optical
flow are defined at the superpixel level, we can figure out that
they take at most OðKÞ ≤ OðWHÞ running time. The imple-
mentation of graph cut costs Oðwh∕S2Þ ¼ OðKÞ running
time because of S ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

wh∕K
p

.
Based on the mentioned inferences, we compare our

approach (ours) in terms of computational complexity with
ours-SC, PSP-MRF, and BM in Table 1. We find that the
computational complexity of all the methods is equal in
polynomial time.

4 Conclusions
We proposed a robust and effective method to improve the
unlabeled short video segmentation based on the object-like
pool. Our approach exploits the temporal and spatial coher-
ence of appearance and motion features of the moving object
to generate the foreground likelihood across the frames.
According to the qualitative and quantitative results, our
approach exceeds the other compared methods, both in accu-
racy and robustness, even when the binary mask and optical
flow suffer from great interference.

However, the proposed algorithm still has some limita-
tions. Occasionally we need to empirically tune the weighted
parameters among different features to produce satisfactory
results, so an intelligent and adaptive method to automati-
cally generate weights should be developed. In addition,
our method works worse for nonrigid objects than rigid
objects because of the conflicting optical flow within them.
Therefore, a more generalized algorithm should be proposed
to solve this problem in further work.
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