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Abstract. Camouflage is a challenging issue in moving object detection. Even the recent and advanced back-
ground subtraction technique, visual background extractor (ViBe), cannot effectively deal with it. To better handle
camouflage according to the perception characteristics of the human visual system (HVS) in terms of minimum
change of intensity under a certain background illumination, we propose an improved ViBe method using an
adaptive distance threshold, named IViBe for short. Different from the original ViBe using a fixed distance thresh-
old for background matching, our approach adaptively sets a distance threshold for each background sample
based on its intensity. Through analyzing the performance of the HVS in discriminating intensity changes, we
determine a reasonable ratio between the intensity of a background sample and its corresponding distance
threshold. We also analyze the impacts of our adaptive threshold together with an update mechanism on detec-
tion results. Experimental results demonstrate that our method outperforms ViBe even when the foreground and
background share similar intensities. Furthermore, in a scenario where foreground objects are motionless for
several frames, our IViBe not only reduces the initial false negatives, but also suppresses the diffusion of mis-
classification caused by those false negatives serving as erroneous background seeds, and hence shows an
improved performance compared to ViBe. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.JEI.23.6.063005]
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1 Introduction
In computer vision applications, objects of interest are
often the moving foreground objects in a video sequence.
Therefore, moving object detection which extracts fore-
ground objects from the background has become a hot
issue,1–7 and has been widely applied to areas such as smart
video surveillance, intelligent transportation, and human-
computer interaction.

Visual background extractor8 (ViBe) is one of the most
recent and advanced techniques. In comparative evaluation,9

ViBe produces satisfactory detection results and has been
proved effective in many scenarios. For each pixel, the back-
ground model of ViBe stores a set of background samples
taken in the past at the same location or in the neighborhood.
Then, ViBe compares the current pixel intensity to this set of
background samples using a distance threshold. Only if
the new observation matches with a predefined number of
background samples is this pixel classified as background,
otherwise this pixel belongs to the foreground. However,
ViBe uses a fixed distance threshold in the matching process;
hence, it has difficulties in handling camouflaged foreground
objects (intentionally or not, some objects may poorly differ
from the appearance of the background, making correct clas-
sification difficult9). Moreover, a “spatial diffusion” update
mechanism for background models aggravates the influence
of misclassified camouflaged foreground pixels, and then

decreases the power of ViBe in detecting still foreground
objects. Camouflaged foreground objects and still fore-
ground objects are two key reasons for false negatives in
the detection results, and it is imperative and urgent to
solve these two challenging issues in video surveillance.

In order to solve the aforementioned challenges, we pro-
pose an improved ViBe method using an adaptive distance
threshold (hereafter IViBe for short). In light of the sensitiv-
ity of the human visual system (HVS) with regard to intensity
change under certain background illumination, we set an
adaptive distance threshold in the background matching
process for each background sample in accordance with its
intensity. Experimental evaluations validate that, because of
using features of the HVS and performing background
matching based on an adaptive distance threshold, IViBe
has a better discriminating power concerning foreground
objects with similar intensities to the background, and then
effectively improves the capability of ViBe in coping with
camouflaged foreground objects. Furthermore, IViBe also
reduces the number of misclassified pixels which usually
serve as erroneous background seeds propagating the false
negatives. Experimental results show that, compared with
ViBe, our IViBe allows a slower inclusion of still foreground
objects into the background, and has a better performance in
detecting static foreground objects.

The rest of this paper is organized as follows. In Sec. 2,
we briefly explore the major background subtraction
approaches. Section 3 describes our IViBe method, introdu-
ces the detailed derivation of our adaptive distance threshold,*Address all correspondence to: Jinkuan Wang, E-mail: wjk@mail.neuq.edu.cn
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and analyzes the influence of this adaptive distance threshold
together with the “spatial diffusion” update mechanism on
the detection results. In Sec. 4, we qualitatively and quanti-
tatively analyze the advantages of our IViBe compared with
ViBe. Finally, a conclusion is drawn in Sec. 5.

2 Related Work
Background subtraction10 (BS) is an effective way of fore-
ground segmentation for a stationary camera. In the BS
methods, via comparing input video frames to their current
background models, the regions corresponding to significant
differences should be marked as foreground. Also, the
BS techniques adapt their background models to scenario
changes through online update and have a moderate compu-
tational complexity, which makes them popular methods for
moving object detection.

Many BS techniques have been proposed with different
kinds of background models, and several recent surveys
have been devoted to this topic.11–13 Although the last decade
has witnessed numerous publications on the BS methods,
according to Ref. 13, there are still many challenges not com-
pletely resolved in real scenes, such as illumination changes,
dynamic backgrounds, bootstrapping, camouflage, shadows,
still foreground objects, and so on. In 2014, two special
issues14,15 have just been published with new developments
for dealing with these challenges.

Next, we briefly explore the major BS approaches accord-
ing to the different kinds of background models they used.

2.1 Parametric Models
Gaussian mixture model (GMM) and its improved methods:
GMM is a classical and probably the most widely used BS
technique.16 GMM models the temporal distribution of each
pixel using a mixture of Gaussians, and many studies have
proven that GMM can handle gradual illumination changes
and repetitive background motion well. In Ref. 17, Lee pro-
posed an adaptive learning rate for each Gaussian model to
improve the convergence rate without affecting the stability.
In Ref. 18, Zivkovic and Van Der Heijden proposed a
scheme to dynamically determine the appropriate number
of Gaussian models for each pixel based on observed scene
dynamics to reduce processing time. In Ref. 19, Zhang
et al. used a spatio-temporal Gaussian mixture model incor-
porating spatial information to handle complex motions of
the background.

Models using other statistical distributions: recently,
a mixture of symmetric alpha-stable distributions20 and a
mixture of asymmetric Gaussian distributions21 have been
employed to enhance the robustness and flexibility of
mixture modeling in real scenarios, respectively. They can
handle the dynamic backgrounds well. In Ref. 22, Haines
and Xiang proposed a Dirichlet process Gaussian mixture
model which constantly adapts its parameters to the scene
in a block-based method.

2.2 Nonparametric Models
Kernel density estimation (KDE) and its improved methods:
a nonparametric technique23 was developed to estimate
background probabilities at each pixel from many recent
samples over time using KDE. In Ref. 24, Sheikh modeled
the background using KDE over a joint domain-range

representation of image pixels to sustain high levels of detec-
tion accuracy in the presence of dynamic backgrounds.

Codebook and its improved methods: the essential idea
behind the codebook25 approach is to capture long-term
background motion with limited memory by using a code-
book for each pixel. In Ref. 4, a multilayer codebook-
based background subtraction (MCBS) model was proposed.
Combining the multilayer block-based strategy and the
adaptive feature extraction from blocks of various sizes,
MCBS can remove most of the dynamic backgrounds and
significantly increase the processing efficiency.

2.3 Advanced Models
Self-organizing background subtraction (SOBS) and its
improved methods: in the 2012 IEEE change detection work-
shop26 (CDW-2012), SOBS27 and its improved method SC-
SOBS28 obtained excellent results. In Ref. 27, SOBS adopted
a self-organizing neural network to build a background
model, initialized its model from the first frame, and
employed regional diffusion of background information in
the update step. In 2012, Maddalena improved the SOBS
by introducing spatial coherence into the background update
procedure, which led to the SC-SOBS algorithm providing
further robustness against false detections. In Ref. 29,
three-dimensional self-organizing background subtraction
(3D_SOBS) used spatio-temporal information to detect a
stopped object. Recently, the 3DSOBS+1 algorithm further
enhanced the 3D_SOBS approach to accurately handle
scenes containing dynamic backgrounds, gradual illumina-
tion changes, and shadows cast by moving objects.

ViBe and its improved methods: in the CDW-2012, ViBe8

and its improved method ViBe+30 also achieved remarkable
results. Barnich and Van Droogenbroeck proposed a sample-
based algorithm that builds the background model by aggre-
gating previously observed values for each pixel location.
The key innovation of ViBe is introducing the random policy
into the BS, which makes it the first nondeterministic
BS method. In Ref. 30, Van Droogenbroeck and Barnich
improved ViBe in many aspects, including an adaptive
threshold. They computed the standard deviation of back-
ground samples of a pixel to define a matching threshold.
The matching threshold adapts itself to statistical character-
istics of background samples; however, all background sam-
ples of a pixel have the same thresholds, and one wrongly
updated background sample will affect the thresholds of
other background samples, which will lead to more mis-
classification. In Refs. 30 and 31, a new update mechanism
separating “segmentation map” and “updating mask” was
proposed. The “spatial diffusion” update mechanism can
be inhibited in the “updating mask” to detect still foreground
objects. In Ref. 32, Mould and Havlicek proposed an update
mechanism in which foreground pixels can update their
background models by replacing the most significant outly-
ing samples. This update policy can improve the ability to
deal with ghosts.

2.4 Human Visual System-Based Models
Visual saliency, another important concept about the HVS,
has already been used in the BS methods. In Ref. 33, Liu
et al. represented object saliency for moving object detection
by an information saliency map calculated from spatio-
temporal volumes. In Ref. 34, Mahadevan and Vasconcelos
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proposed a BS algorithm based on spatio-temporal saliency
using a center-surround framework, which is inspired by
biological mechanisms of motion-based perceptual group-
ing. These methods have shown the potential of the HVS in
moving object detection.

In this paper, we propose an improved BS technique
which uses the characteristic of the HVS.

We introduce an adaptive distance threshold into ViBe to
simulate the capacity of the HVS in perceiving noticeable
intensity changes, which can discriminate camouflaged
foreground objects and reduce false negatives. Together
with ViBe’s update policy, our method further improves
the ability to detect foreground objects that are motionless
for a while. Hence, IViBe improves the ability of ViBe in
dealing with camouflaged and still foreground objects.

3 Improved ViBe Method
Our IViBe is a pixel-based BS method. When building
the background model for each pixel, it does not rely on
a temporal statistical distribution, but employs a universal
sample-based method instead. Let xi be an arbitrary pixel
in a video image, and BðxiÞ be its background model con-
taining N background samples (values taken in the past in
the same location or in the neighborhood):

BðxiÞ ¼ fB1ðxiÞ; : : : ; BkðxiÞ; : : : ; BNðxiÞg: (1)

The background model BðxiÞ is first initialized from one
single frame according to the intensities of pixel xi and its
neighboring pixels, and then updated online when pixel xi is
classified as background or by a “spatial diffusion” update
mechanism.

The pixel xi is classified as a background pixel only if its
current intensity IðxiÞ is closer than a certain distance thresh-
old RkðxiÞ (1 ≤ k ≤ N) to at least #min of its N background
samples. Thus, the foreground segmentation mask is calcu-
lated as

FðxiÞ ¼
�
1; #fjIðxiÞ − BkðxiÞj < RkðxiÞg < #min;
0; else:

(2)

Here, FðxiÞ ¼ 1 signifies that the pixel xi is a foreground
pixel, # denotes the cardinality of a set, #min is a fixed param-
eter indicating the minimal matching number, and RkðxiÞ is
an adaptive distance threshold according to the perception
characteristics of the HVS.

In Sec. 3.1, we introduce our adaptive distance threshold
and its derivation. Section 3.2 shows how our adaptive dis-
tance threshold together with the “spatial diffusion” update
mechanism affects the detection results.

3.1 Adaptive Distance Threshold
In order to better segment foreground objects similar to the
background, we introduce an adaptive distance threshold
RkðxiÞ for background matching. Different from ViBe which
uses a fixed distance threshold RkðxiÞ ¼ 20 for each back-
ground sample, we propose an adaptive distance metric
through simulating the characteristics of human visual per-
ception (i.e., Weber’s law35).

Weber’s law describes the human response to a physical
stimulus in a quantitative fashion. The just noticeable differ-
ence (JND) is the minimum amount by which stimulus

intensity must be changed in order to produce a noticeable
variation in the sensory experience. Ernst Weber, a 19th
century experimental psychologist, observed that the size
of the JND is linearly proportional to the initial stimulus
intensity. This relationship, known as Weber’s law, can be
expressed as

ΔIJND∕I ¼ c; (3)

where ΔIJND represents the JND, I represents the initial
stimulus intensity, and c is a constant called the Weber ratio.

In visual perception, Weber’s law actually describes the
ability of the HVS for brightness discrimination, and the
Weber ratio can be obtained by a classic experiment36

which consists of having a subject look at a flat, uniformly
illuminated area (with intensity I) large enough to occupy the
entire field of view, as Fig. 1 shows. An increment of illu-
mination (i.e.,ΔI) is added to the field and appears as a circle
in the center. When ΔI achieves ΔIJND, the subject will give
a positive response, indicating a perceivable change. In
Weber’s law, ΔIJND is in direct proportion to I. Hence,
the ΔIJND is small in dark backgrounds and big in bright
backgrounds.

In the BS methods, when comparing current intensity
with the corresponding background model, the distance
threshold can actually be considered as the critical intensity
difference in distinguishing foreground objects from the
background. Fortunately, Weber’s law describes the capacity
of the HVS in perceiving noticeable intensity changes, and
the JND that the HVS can perceive is in direct proportion to
the background illumination. Inspired by Weber’s law, we
propose our adaptive distance threshold in direct proportion
to the background sample intensity; namely, the distance
threshold should be low for a dark background sample
and high for a bright background sample.

In our method, mapping to Weber’s law is as follows:
the background sample intensity BkðxiÞ can be regarded
as the initial intensity I, the difference between the current
value and each background sample is the intensity change
ΔI, and the distance threshold RkðxiÞ can be regarded
as the JND (i.e., ΔIJND). Consequently, on the basis of
Weber’s law, we set

RkðxiÞ∕BkðxiÞ ¼ c: (4)

In Eq. (4), BkðxiÞ is the known background sample inten-
sity, and if we want to derive the distance threshold RkðxiÞ,
we have to first obtain theWeber ratio c. However, we cannot
directly use the Weber ratio obtained in the classic experi-
ment, because the classic experiment uses a uniformly illu-
minated area as background, but what we need in our method
is a Weber ratio with a complex image as the background.
As described in Ref. 37, “for any point or small area in a
complex image, the Weber ratio is generally much larger
than that obtained in an experimental environment because
of the lack of sharply defined boundaries and intensity var-
iations in the background.” Moreover, it is also difficult to
gain the Weber ratio via redoing the classic experiment
using a complex image as the background, because such
an experiment will need many subjects and the subjects’
evaluation criteria are inconsistent, which will reduce the
creditability of the experiment.
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Based on the consideration above, we employ a substitute
of subjective evaluations in the classic experiment to derive
the Weber ratio c for a complex image as the background.
Specifically, the substitute is the difference of the peak sig-
nal-to-noise ratio (PSNR38) presented by the motion picture
experts group (MPEG). The MPEG recommends that,38 for
an original reference image (R) and two of its reconstructed
images (D1 andD2), only when the difference of PSNR (i.e.,
ΔPSNR) satisfies

jPSNRðD1; RÞ − PSNRðD2; RÞj ≥ 0.5 ðdBÞ; (5)

the HVS can perceive thatD1 andD2 are different. In Eq. (5),
PSNRðD;RÞ is used to estimate the level of errors in a
distorted image D from its original reference image R. For
grayscale images with intensities in the range of [0, 255],
PSNRðD;RÞ is defined as

PSNRðD;RÞ ¼ 20 lg
255

1
n kD − Rk1

¼ 20 lg
255

1
n

P
n
m¼1 jdm − rmj

ðdBÞ; (6)

where n is the number of pixels in the original image R, and
dm and rm denote the intensities of them’th pixel inD and R,
respectively.

Since ΔPSNR can objectively reflect the ability of the
HVS in discriminating intensity changes, we use ΔPSNR
to substitute the subjects’ perception in the classic experi-
ment with a complex image as the background. Here, we
first construct a complex image. Suppose there is a complex
image whose rows and columns are divided into 16 equal
parts, respectively. Thus, the complex image is composed
of 256 regions of the same size. For each region, the
setup is the same as the classic experiment shown in
Fig. 1. That is, each region is uniformly illuminated with
intensity I, and an increment of illumination (i.e., ΔI) is
added to the centered circle. Such a region is called a
basic region. The complex image consists of 256 basic
regions (with I ¼ 0;1; : : : ; 255), which are randomly permu-
tated, as shown in Fig. 2. In this way, we construct a complex
image as the background to simulate the classic experiment
in all intensity levels simultaneously, which makes our der-
ivation general and objective.

All the circles in the basic regions of Fig. 2 simultane-
ously change their intensities with ΔI. When jΔIj reaches
ΔIJND for all the basic regions, the HVS can barely perceive
the intensity changes of the complex image (let this image be
D1). When jΔIj ¼ ΔIJND þ ε (ε is a very small constant, and
for a digital image we set ε ¼ 1) for all the basic regions, the
HVS can obviously perceive the intensity changes of the
complex image (let this image be D2). Suppose the complex
image shown in Fig. 2 is the original reference image (i.e.,
R), thenD1 andD2 can be regarded as two different distorted
images which are reconstructed from the same R and are just
perceivably distinguishable by the HVS. Accordingly, on the
basis of Eq. (3), the 1-norm of difference between R and D1

is given in Eq. (7), and the 1-norm of difference between
R and D2 is provided in Eq. (8),

kD1 − Rk1 ¼
X255
I¼0

X
w

ΔIJND ¼
X255
I¼0

X
w

cI ¼ w
X255
I¼0

cI; (7)

kD2 − Rk1 ¼
X255
I¼0

X
w

ðΔIJND þ 1Þ ¼
X255
I¼0

X
w

ðcI þ 1Þ

¼ w
X255
I¼0

ðcI þ 1Þ; (8)

where w denotes the number of pixels in the circle of each
basic region in Fig. 2. In accordance with the recommenda-
tion of the MPEG, the difference of PSNR between these
two reconstructed images (D1 and D2) meets equality in
Eq. (5), i.e., ΔPSNR ¼ 0.5 ðdBÞ, that is,

20 lg
255

w
n

P
255
I¼0 cI

− 20 lg
255

w
n

P
255
I¼0ðcI þ 1Þ ¼ 0.5; (9)

where n denotes the number of pixels in the complex image.
Simplifying Eq. (9), we can derive c ¼ 0.13. As a result,

we conclude that the relationship between the intensity of a
background sample and its corresponding distance threshold
is: RkðxiÞ ¼ 0.13BkðxiÞ.

Nevertheless, according to the description of brightness
adaptation of the HVS in Ref. 37, we can infer that, in
the extremely dark and extremely bright regions of a

Fig. 1 Basic experimental setup used to characterize brightness
discrimination.

Fig. 2 Simulated complex image as background.
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complex image, the linear relationship in Weber’s law cannot
precisely describe the relation between perceptible intensity
changes of the HVS and the background illumination.
Therefore, our solution is to cut off the distance threshold
for background samples whose intensities are too high
or too low. After many experiments, we empirically set
[10%, 90%] of the entire intensity range satisfying the linear
relationship. Namely, the cut off intensities are T1 ¼ d255 ×
0.1e ¼ 26 and T2 ¼ d255 × 0.9e ¼ 230. Consequently, the
adaptive distance threshold can be calculated as

RkðxiÞ ¼ c minfmax½BkðxiÞ; T1�; T2g; (10)

which is shown in Fig. 3.

3.2 Background Model Update Mechanism and
Impacts of Our Adaptive Distance Threshold
Together with Update Mechanism on
Detection Results

It is essential to update the background model BðxiÞ to adapt
to changes in the background, such as lighting changes and
variations of the background. The update of background
models is not only for pixels classified as background, but
also for their randomly selected eight-connected neighbor-
hood. In detail, when a pixel xi is classified as background,
its current intensity IðxiÞ is used to randomly replace one of
its background samples BkðxiÞ (k ∈ f1;2; : : : :; Ng) with a
probability p ¼ 1∕ϕ, where ϕ is a time subsampling factor
similar to the learning rate in GMM (the smaller the ϕ we
use, the faster the update speed we get). After updating
the background model of pixel xi, we randomly select a
pixel xj in the eight-connected spatial neighborhood of
pixel xi, i.e., xj ∈ N8ðxiÞ. In light of the spatial consistency
of neighboring background pixels, we also use the current
intensity IðxiÞ of pixel xi to randomly replace one of
pixel xj’s background samples BkðxjÞ (k ∈ f1;2; : : : :; Ng).
In this way, we allow a spatial diffusion of background
samples in the process of background model update.

The advantage of this “spatial diffusion” update mecha-
nism is the quick absorption of certain types of ghosts (a set
of connected points, detected as in motion but not corre-
sponding to any real moving object8). Some ghosts result
from removing some parts of the background; therefore,
those ghost areas often share similar intensities with their
surrounding background. When background samples from
surrounding areas try to diffuse inside the ghosts, these sam-
ples are likely to match with current intensities at the diffused
locations. Thus, the diffused pixels in the ghosts are gradu-
ally classified as background. In this way, the ghosts can be
progressively eroded until they entirely disappear.

However, the “spatial diffusion” update mechanism is
disadvantageous for detecting still foreground objects. In
environments where the foreground objects are static for
several frames, either because the foreground objects share
similar intensities with the background, or due to the noise
inevitably emerging in the video sequence, some pixels of
the foreground objects may be misclassified as background,
and then serve as erroneous background seeds propagating
foreground intensities in the background models of their
neighboring pixels. Since foreground objects are still for sev-
eral frames, the background models of the neighboring pixels
of these misclassified pixels will suffer from more and more
incorrect background samples coming from misclassified
foreground intensities. In this way, there will be more mis-
classified foreground pixels, which will lead to the diffusion
of misclassification.

Fortunately, our IViBe employs background matching
based on an adaptive distance threshold which can reduce
the misclassification inside the foreground objects, can
slow down the speed of the misclassification diffusion,
and can lower the eaten up speed of still foreground objects.
First, IViBe makes full use of the adaptive distance threshold
to enhance the discriminating power of similar foregrounds
and backgrounds, and then reduces the number of misclas-
sified foreground pixels, which can decrease the possibility
of erroneous background seeds occurring. Second, even
though misclassification emerges inside the foreground
objects for some reason and leads foreground intensities dif-
fusing into the background models of neighboring pixels,
the adaptive distance threshold can also cut down the mis-
classification possibilities of those neighboring pixels inside
the foreground objects. Via the aforementioned analysis, we
conclude that IViBe has the ability to detect still foreground
objects that are present for several frames.

Since we use the adaptive distance threshold as Eq. (10),
our threshold for dark areas will be smaller than that of ViBe,
hence fewer pixels will be classified as background and then
be updated; whereas for bright areas, our threshold will be
larger than the fixed threshold used by ViBe, and so more
pixels will be classified as background and will then be
updated. Accordingly, the updating probability is lower for
dark areas and higher for bright areas.

4 Experimental Results
In this section, we first list the test sequences and determine
the optimal values of parameters in our IViBe method, and
then compare our results with those of ViBe in terms of
qualitative and quantitative evaluations.

4.1 Experimental Setup
4.1.1 Test sequences

In our experiments, we employ the widely used changede-
tection.net26,39 (CDnet) benchmark. We select two sequences
to test the capability of these techniques in coping with the
camouflaged foreground objects. One sequence is called
“lakeSide” from the thermal category, and the other sequence
is called “blizzard” from the bad weather category. In the
lakeSide sequence, two people are undistinguishable from
the lake behind them in thermal imagery after they get
out from the lake and have the same temperatures as the
lake. This sequence is really a challenging camouflage sce-
nario, for it is even difficult for eyes to discriminate these

Fig. 3 The relationship between the intensity of a background sample
and its corresponding distance threshold.
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people from the background. In the blizzard sequence, a road
is covered by heavy snow during bad weather; meanwhile,
some cars passing through are white, and some cars with
other colors are partially covered by white snow, which
makes correct classification difficult.

Besides, to validate the power of IViBe in coping with
still foreground objects, we further choose two other typical
sequences from the CDnet. One sequence is called “library”
from the thermal category, and the other sequence is called
“sofa” from the intermittent object motion category. In the
library sequence, a man walks in the scene and selects a
book, and then sits in front of a desk reading the book
for a long time. In the sofa sequence, several men succes-
sively sit on a sofa to rest for dozens of frames, and place
their belongings (foreground) aside; for example, a box is
abandoned on the ground and a bag is left on the sofa.

Moreover, to test the performance of our method in gen-
eral environments, we also select the baseline category which
contains four videos (i.e., highway, office, pedestrians, and
PETS2006) with a mixture of mild challenges (including
dynamic backgrounds, camera jitter, shadows, and intermit-
tent object motion). For example, the highway sequence
endures subtle background motion, the office sequence
suffers from small camera jitter, the pedestrians sequence
has isolated shadows, and the PETS2006 sequence has
abandoned objects and pedestrians that stop for a short
while and then move away. These videos are fairly easy
but are not trivial to process.26

4.1.2 Determination of parameter setting

There are six parameters in IViBe: number of background
samples stored in each pixel’s background model (i.e., N),
ratio of RkðxiÞ to BkðxiÞ (i.e., c), cutoff thresholds (i.e.,
T1 and T2), required number of close background samples
when classifying a pixel as background (i.e., #min), and
time subsampling factor (i.e., ϕ).

In Sec. 3.1, we have determined the parameters of our
adaptive distance threshold, namely c ¼ 0.13, T1 ¼ 26,
and T2 ¼ 230.

In order to evaluate #min and N with a variety of values,
we introduce the metric called percentage of correct classi-
fication8 (PCC) that is widely used in computer vision to
assess the performance of a binary classifier. Let TP be
the number of true positives, TN be the number of true neg-
atives, FP be the number of false positives, and FN be the
number of false negatives. These raw data (i.e., TP, TN,
FP and FN) are summed up over all the frames with
ground-truth references in a video. The definition of PCC
is given as follows:

PCC ¼ 100ðTPþ TNÞ
TPþ FPþ TNþ FN

: (11)

Figure 4 illustrates the evolution of the PCC of IViBe on
the pedestrians sequence (with 800 ground-truth references)
in the baseline category for #min ranging from 1 to 20. The
other parameters are fixed to N ¼ 20, c ¼ 0.13, T1 ¼ 26,
T2 ¼ 230, and ϕ ¼ 16. As shown in Fig. 4, when the
#min increases, the PCC goes down. The best PCCs are
obtained for #min ¼ 1 (PCC ¼ 99.8310), #min ¼ 2
(PCC ¼ 99.8324) and #min ¼ 3 (PCC ¼ 99.7923). In our
experiments, we find that for stable backgrounds like

those in the baseline category, #min ¼ 1 can also lead to
excellent results. But in more challenging scenarios, #min ¼
2 and #min ¼ 3 are good choices. Since a rise in #min is likely
to increase the computational cost of IViBe, we set #min ¼ 2.

Once we set #min ¼ 2, we study the influence of the
parameter N on the performance of IViBe. Figure 5
shows the percentages obtained on the pedestrians sequence
for N ranging from 2 to 30. The other parameters are fixed to
#min ¼ 2, c ¼ 0.13, T1 ¼ 26, T2 ¼ 230, and ϕ ¼ 16. We
observe that higher values ofN provide a better performance.
However, the PCCs tend to saturate for N ≥ 20. Considering
that a large N value will induce a large memory cost, we
select N ¼ 20.

The time subsampling factor ϕ is just like the learning rate
in the GMM. A large time subsampling factor indicates a
small update probability, then the background samples are
unable to timely adapt to changes in the real backgrounds,
such as gradual illumination changes. That is, when using a
large ϕ, there may be more false positives due to the outdated
background model. On the contrary, a small ϕmeans that the
background samples are very likely to be updated according
to the current frame, and a still foreground object may be

Fig. 4 PCCs for #min ranging from 1 to 20.

Fig. 5 PCCs for N ranging from 2 to 30.
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much easier to be absorbed into the background to produce
more false negatives. Hence, there is a trade-off to adjust ϕ in
order to balance the false positives and the false negatives.
Besides, ϕ also affects the speed of our method, because a
small ϕ will lead to a much higher computational cost for
updating. As in ViBe, we also set ϕ ¼ 16.

Therefore, the parameters of IViBe are set as follows: the
number of background samples stored in each pixel’s back-
ground model is fixed to N ¼ 20; the ratio of RkðxiÞ to
BkðxiÞ is set to c ¼ 0.13; the cutoff thresholds are set to T1 ¼
26 and T2 ¼ 230; the required number of close background
samples when classifying a pixel as background is fixed to
#min ¼ 2; the time subsampling factor is fixed to ϕ ¼ 16.

As for ViBe, the recommended parameters as suggested
in Ref. 8 have been used: N ¼ 20, RkðxiÞ ¼ 20, #min ¼ 2,
and ϕ ¼ 16.

4.1.3 Other settings

For fair comparison, no postprocessing techniques (such as
noise filtering, morphological operations, connected compo-
nents analysis, etc.) are applied in our test for the purpose of
evaluating the unaided strength of each approach.

4.2 Visual Comparisons
For qualitative evaluation, we visually compare the detection
results of our IViBe with those of ViBe in Figs. 6–10 on the
test sequences. Although multiple test frames were used for
each test sequence, we only show one typical frame for each
sequence here due to space limitation.

Figure 6 shows the detection results of the lakeSide
sequence. In the input frame shown in Fig. 6(a), after swim-
ming in the lake, the body temperatures of the people are

similar to that of the lake; therefore, intensities inside the
human bodies (except the heads) are almost the same as
the intensities of the lake. In the detection result of ViBe
shown in Fig. 6(c), we can find that the child’s body is
incomplete with many false negatives. This is mainly
because ViBe uses a fixed distance threshold RkðxiÞ ¼ 20
which is large for dark environments, and unfortunately clas-
sifies dark foreground objects as background. However, as
shown in Fig. 6(d), our IViBe is able to correctly detect
most of the foreground regions due to its utilization of an
adaptive distance threshold based upon the perception char-
acteristics of the HVS.

In Fig. 7, the detection results of the blizzard sequence are
depicted. To show more clearly, we enlarge two areas that
only contain foreground cars to illustrate the improvement
of our method. The blizzard sequence is also a very challeng-
ing sequence, as shown in Figs. 7(a) and 7(e) [partial
enlarged views of the Fig. 7(a)]. Because of snow fall,
most of the cars appear white, which will lead to confusion
between the passing cars and the road covered by thick snow.
As can be seen in Fig. 7(c) and particularly in Fig. 7(g), in the
detection result of ViBe, there are holes inside the detected
cars, and obviously false detections appear in the areas
covered by snow. In contrast to ViBe, our IViBe can dis-
criminate subtle variations using an adaptive distance thresh-
old, and can gain more complete detection results. As shown
in Fig. 7(h), our IViBe achieves an evident improvement
compared to ViBe.

Figure 8 illustrates the detection results of the library
sequence. This is an infrared sequence and contains a lot
of noise. In Fig. 8(a), a man is static for a long time
while he sits on the chair reading a book. Because of inevi-
table noise, in the detection result of ViBe, misclassification

Fig. 6 Detection results of the lakeSide sequence: (a) frame 2255 of the lakeSide sequence, (b) ground-
truth reference, (c) result of ViBe, (d) result of IViBe.
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emerges in the head, shoulder, and legs of the foreground,
later propagates to their neighboring pixels, and finally
results in large holes inside the foreground, as shown in
Fig. 8(c). However, due to the adaptive distance threshold,
our method yields less misclassification in the regions of
head, shoulder, and legs of the foreground, and also sup-
presses the propagation of misclassification. These results
prove that our IViBe is more powerful for detecting still
foreground objects lasting for some frames in comparison
with ViBe.

Figure 9 shows the detection results of the sofa sequence.
In Fig. 9(a), we can find an abandoned box (foreground)
which is static for a long time on the left corner. Meanwhile,
a man sits on the sofa and remains still for quite an extended
period. Due to the presence of noise and the adoption of a
“spatial diffusion” update mechanism, in the detection result
of ViBe, as shown in Fig. 9(c), the box is almost eaten-up and
a large number of false negatives appear inside the man. In
Fig. 9(d), a notable improvement is shown in our result: the
man is more complete and the top surface of the box is well

detected. This improvement is mainly the result of the adap-
tive distance threshold we used.

Figure 10 shows the detection results of the baseline cat-
egory. For the highway sequence, our method produces more
scattered false positives than ViBe in the dark areas of wav-
ing trees and their shadows, but detects more complete cars
in the top right corner. For the office sequence, a man stands
still for some time while reading a book, and Fig. 10(d)
shows that IViBe detects more true positives in the legs
of the man compared to ViBe. For the pedestrians sequence,
both methods yield similar results with evident shadow
areas. For the PETS2006 sequence, a man and his bag
remain still for a while, and IViBe obviously detects more
complete results.

4.3 Quantitative Comparisons
To objectively assess the detection results, we employ four
metrics26,39 recommended by the CDnet, i.e., recall, preci-
sion, F1, and percentage of wrong classification (PWC)

Fig. 7 Detection results of the blizzard sequence: (a) frame 1266 of the blizzard sequence, (b) ground-
truth reference, (c) result of ViBe, (d) result of IViBe, (e)–(h) partial enlarged views of (a)–(d).
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to judge the performance of the BS methods on pixel level.
Let TP be the number of true positives, TN be the number of
true negatives, FP be the number of false positives, and FN
be the number of false negatives. These raw data (i.e., TP,
TN, FP and FN) are summed up over all the frames with

ground-truth references in a video. For a video v in a cat-
egory a, these metrics are defined as

recallv;a ¼
TPv;a

TPv;a þ FNv:a
; (12)

Fig. 8 Detection results of the library sequence: (a) frame 2768 of the library sequence, (b) ground-truth
reference, (c) result of ViBe, (d) result of IViBe.

Fig. 9 Detection results of the sofa sequence: (a) frame 900 of the sofa sequence, (b) ground-truth refer-
ence, (c) result of ViBe, (d) result of IViBe.
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precisionv;a ¼
TPv;a

TPv;a þ FPv;a
; (13)

F1v;a ¼ 2
recallv;a · precisionv;a
recallv;a þ precisionv;a

; (14)

PWCv;a ¼
100ðFNv;a þ FPv;aÞ

TPv;a þ FNv;a þ FPv;a þ TNv;a
: (15)

Then the average metrics of category a can be calculated
as

recalla ¼
1

Na

XNa

v¼1

recallv;a; (16)

precisiona ¼
1

Na

XNa

v¼1

precisionv;a; (17)

F1a ¼
1

Na

XNa

v¼1

F1v;a; (18)

PWCa ¼
1

Na

XNa

v¼1

PWCv;a; (19)

where Na is the number of videos in the category a. These
metrics are called category-average metrics.

Generally, the recall (known as detection rate) is used in
conjunction with the precision (known as positive predic-
tion), and a method is considered good if it reaches high
recall values without sacrificing precision.27 Since recall
and precision often contradict each other, the overall indica-
tors (F1 and PWC) which integrate false positives and false
negatives in one single measure are employed to further
compare the results. The first three metrics mentioned
above all lie in the range of [0,1], and the higher the metrics
are, the better the detection results are. The PWC lies in
[0,100]; here, lower is better.

Tables 1–4 show these four metrics for the lakeSide, bliz-
zard, library and sofa sequences using ViBe and our method,
respectively. These metrics are calculated utilizing all the
ground-truth references available. That is, frames 1000 to
6500 in the lakeSide sequence; frames 900 to 7000 in the
blizzard sequence; frames 600 to 4900 in the library
sequence; frames 500 to 2750 in the sofa sequence.

As illustrated in Table 1, for the lakeSide sequence, the
precision value of our method decreases slightly compared
to that of ViBe; however, the recall value of our IViBe
increases remarkably compared to that of ViBe. With regard
to the overall indicators (F1 and PWC), our method exhibits

Fig. 10 Detection results of the baseline category: (a) input frames, (b) ground-truth references,
(c) results of ViBe, (d) results of IViBe.

Table 1 Comparison of metrics for the lakeSide sequence.

Recall Precision F1 PWC

ViBe 0.2224 0.9539 0.3607 1.5105

Our method 0.4162 0.9157 0.5723 1.1920
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an impressive improvement over ViBe. As seen in Table 2,
for the blizzard sequence, our precision value decreases by
0.01, but our recall value increases by 0.06. For F1 and
PWC, our method achieves a moderate improvement. As
shown in Table 3, for the library sequence, our proposed
IViBe produces results with all the metrics better than
those of ViBe. Table 4 shows that, for the sofa sequence,
our precision value decreases by 0.13, while our recall
value increases by 0.25. For F1 and PWC, our method
obtains a remarkable improvement. The experimental results
demonstrate that, in the scenarios which contain camou-
flaged foreground objects, our IViBe can significantly reduce
false negatives in the detection results; in the environments
where the foreground objects are static for some frames, our
IViBe slows the eaten-up speed of those still foreground
objects in the detection results.

To calculate the category-average metrics of the baseline
category, we also utilize all the ground-truth references avail-
able. That is, frames 470 to 1700 in the highway sequence;
frames 570 to 2050 in the office sequence; frames 300 to
1099 in the pedestrians sequence; frames 300 to 1200 in
the PETS2006 sequence. Table 5 shows the category-average
metrics for the baseline category using ViBe and our method.
As can be seen in Table 5, our method produces results with

a larger recall and a smaller precision; however, the overall
indicators (F1 and PWC) of both methods are quite similar.

In general, through quantitative analysis, our IViBe
method outperforms ViBe when dealing with camouflaged
and still foreground objects, and has a similar performance
to ViBe when dealing with normal videos with mild
challenges.

5 Conclusion
According to the perception characteristics of the HVS
concerning the minimum intensity changes under certain
background illuminations, we propose an improved ViBe
method using an adaptive distance threshold for each back-
ground sample in accordance with its intensity. Experimental
results demonstrate that our IViBe can effectively improve
the ability to deal with camouflaged foreground objects.
Since the camouflaged foreground objects are ubiquitous
in every real world video sequence, our IViBe has powerful
practical value in smart video surveillance systems.
Moreover, because of the capacity in dealing with the cam-
ouflaged foreground objects, our IViBe not only cuts down
the misclassification of foreground pixels as background, but
also further suppresses the propagation of misclassification,
especially for those pixels inside the still foreground objects.
Experimental results also prove that our method outperforms
ViBe in scenarios in which foreground objects remain static
for several frames.
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