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bstract. We propose a frame-matching algorithm for video se-
uences, when a video sequence is modified from its original
hrough frame removal, insertion, shuffling, and data compression.
he proposed matching algorithm defines an effective matching cost

unction and minimizes cost using dynamic programming. Experi-
ental results show that the proposed algorithm provides a signifi-

antly lower probability of matching errors than the conventional
lgorithm. © 2009 SPIE and IS&T. �DOI: 10.1117/1.3092367�

Introduction
ideo matching techniques are motivated by various appli-
ations, including video retrieval, surveillance, and water-
arking. In video retrieval,1,2 frame matching is used to

etrieve video clips, similar to a query clip, from a data-
ase. In video surveillance using multiple cameras,3 it is
ecessary to establish the correspondences in time and
pace to combine asynchronous multiview sequences. In
ideo watermarking,4–6 temporal synchronization should be
stablished between the original and watermarked videos
efore the extraction of frame-dependent watermarks.

Video matching techniques have different accuracy re-
uirements, depending on their target applications. In video
etrieval,1,2 video matching need not be accurate at the
rame level. It is acceptable that a retrieved frame does not
atch a query frame exactly, as long as they contain similar

ontents. In contrast, in video watermarking, more accurate
atching is required, and two video sequences should be

ynchronized at the frame level, since the matching is a
reprocessing step before the extraction of frame-
ependent watermarks.8 For instance, in Ref. 6, the pattern
f skipped frames is employed as a watermark, and the
ccurate frame-level synchronization between an original
ideo and its watermarked version is an essential step in
atermark detection.
In watermarking applications, Delannay, Roover, and

acq4 used an affine model to align video sequences. An
ffine model, however, cannot effectively describe irregular
rame insertion and removal as well as frame shuffling,
hich are employed to attack watermarked video se-
uences. Cheng5 proposed a temporal registration algo-
ithm to correct temporal misalignment, which occurs in
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frame rate conversion or video capturing. The two-frame
integration model was employed to represent temporally
overlapping frames in the acquisition procedures.

In video watermarking, the original video can be modi-
fied by various temporal attacks, such as frame removal,
insertion, and shuffling. To establish frame-level synchro-
nization between original and modified sequences in video
watermarking applications, we propose a dynamic pro-
gramming algorithm that matches each frame in the modi-
fied sequence to the corresponding frame in the original
sequence. Although Ref. 5 also employed dynamic pro-
gramming to match two sequences, they used only frame
dissimilarity in the matching. On the other hand, we intro-
duce the notion of adaptive unmatched cost in addition to
the matching cost to achieve more accurate matching.
Moreover, the unmatched cost is used to deal with frame
shuffling attacks, as well as frame removal and insertion
attacks.

2 Matching Function and Matching Cost
Suppose that a video clip X= �X1 , . . . ,XlX

�, where Xj de-
notes the j’th frame, is modified from the original clip
Y= �Y1 , . . . ,YlY

�. A frame Xj may be different from any
frame Yk in the original clip, since the clip X may be a
compressed version of Y. Moreover, some frames can be
removed from or inserted into X, and then the resulting
frames can be shuffled. We assume that the number of re-
moved frames is less than a threshold �R. Similarly, let �I
and �S denote the maximum numbers of inserted frames
and shuffled frames, respectively.

We say that a frame Xj in X matches a frame Yk in Y if
Xj originates from Yk. On the other hand, Xj is called an
unmatched frame if Xj does not match any frame in Y.
Then, the temporal modification of a video can be repre-
sented by a function on the space of frame indices. Specifi-
cally, we define the matching function � as

��j� = �k , if Xj matches Yk

0, if Xj is an unmatched frame
� , �1�

where j belongs to the frame index set �1,2 , . . . , lX� of X.
For example, Table 1 shows a matching function, when
lX=9 and lY =10. In this case, X is modified from Y by
removing Y2 and Y6, inserting new frames before Y7, and
then reversing the order of Y8 and Y9.

Let dm�j ,k� denote the matching cost between two
frames Xj and Yk, which measures the dissimilarity between
Xj and Yk. The mean squared error �MSE� is employed as
the matching cost.

3 Proposed Matching Algorithm
Given a video clip X and its original Y, we attempt to find
a matching function ��j�, such that Y��j� in Y is identical or
similar to Xj in X for each 1� j� lX. The simplest matching
can be achieved by the local minimization of matching
costs �LMMC� via

�LMMC�j� = arg min
1�k�lY

dm�j,k� for 1 � j � lX. �2�

To recover from frame insertion attacks, Xj can be declared
to be an unmatched frame if the minimum cost
Jan–Mar 2009/Vol. 18(1)1
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in1�k�lY
dm�j ,k� is larger than a threshold. However, in

his LMMC approach, matching functions may not be one
o one, and estimation results are very sensitive to the
hreshold.

We propose a globally optimal matching algorithm that
inimizes the total matching cost subject to the one-to-one
atching constraint. First, we assume that the original

ideo clip is temporally modified by frame removal and
nsertion attacks only, and find the best matching function
* under this monotonicity assumption. Later, in the second
hase, we detect frame shuffling attacks by further match-
ng the unmatched frames of �* without imposing the
onotonicity constraint.
Assuming frame removal and insertion attacks only, the

atching function can be estimated by minimizing the sum
f the costs of matched frames and unmatched frames,
iven by

* = arg min
��� � �

j;��j��0
dm�j,��j�	 + �

l;��l�=0
du�l�� , �3�

here �= �� 
��j����j�� if j� j� ,��j��0,��j���0�.
ote that a function � in � is monotonically increasing on

he reduced domain �j :1� j� lX and ��j��0�, which ex-
ludes the unmatched frame indices. The unmatched cost of
he l’th frame is defined as

u�l� = max
j��l−�,l+�	;��j��0

min
1�k�lY

dm�j,k� . �4�

otice that the unmatched cost of the l’th frame is adap-
ively determined by the matched costs of the neighboring
rames inside a temporal window �l−� , l+�	, where � de-
otes the window size. In general, a large du�l� indicates
hat the neighboring frames are heavily compressed or they
ontain complex textures and motions. Thus, a large du�l�
akes it easier to classify the l’th frame as a matched

rame.
In Eq. �3�, when i frames, max�lX− lY ,0�� i��I, are in-

erted into X, there are � lX

i
� possible choices of unmatched

rames and � lY

lX−i
� possible choices of matched frames.

herefore, the complexity of the exhaustive minimization
n Eq. �3� is proportional to �i=max�0,lX−lY�

�I � lX

i
�� lY

lX−i
�, which is

oo demanding in most applications.
To reduce the complexity, we minimize the total cost

unction in Eq. �3� based on dynamic programming. The
ynamic programming method in this work is similar to
hat for computing the Levenshtein distance, also called the
dit distance, between two text strings.10,11 The edit dis-
ance counts the minimum number of letter substitutions,
nsertions, or removals to convert a text string to another
tring. Similarly, the proposed algorithm matches a video
equence to another sequence by considering frame inser-
ions and removals. However, whereas the distance be-

Table 1 A matching function ��j� that describ

j 1 2 3 4

��j� 1 3 4 5
ournal of Electronic Imaging 010504-
tween two letters is binary �identical or not�, the distance
between two frames should represent the similarity of those
two frames. Thus, as compared with letter insertions or
removals, it is more difficult to identify frame insertions or
removals. To overcome this difficulty, the proposed algo-
rithm defines the matching cost as MSE and the unmatched
cost in Eq. �4� and minimizes the total cost in Eq. �3� to
achieve reliable video matching.

Suppose that the first j frames of X are obtained by
removing r frames from the first k frames of Y and then
inserting i new frames. Note that k= j− i+r, since �j− i�
frames in X match �k−r� frames in Y. Let s�j ; i ,r� denote
the minimum sum of the matching costs for the first j
frames in X when i frames are inserted and r frames are
removed.

We compute s�j ; i ,r� recursively. First, we initialize
s�j ; i ,r�=� if j�1, i�0, or r�0 with the exception
s�0;0 ,0�=0. Then, s�j ; i ,r� can be obtained by finding the
minimum among three cases

s�j ;i,r� = min�s�j − 1;i,r� + dm�j,k� ,

s�j − 1;i − 1,r� + du�j� ,

s�j ;i,r − 1�
� , �5�

where k= j− i+r. When Xj matches Yk, the matching cost
dm�j ,k� is added to s�j−1; i ,r�, which is the first term in
Eq. �5�. When Xj is an inserted frame, the unmatched cost
du�j� is added to s�j−1; i−1,r�. If Yk is a removed
frame, s�j ; i ,r−1� remains unchanged. In this way, we
compute all s�j ; i ,r� inductively. Finally, the minimum sum
of costs for the whole sequence is given by
minmax�0,lX−lY��i��I

s�lX ; i , lY − lX+ i�. While computing the
partial costs in Eq. �5�, we also record the minimum con-
ditions, which we can trace back to get the matching func-
tion in Eq. �3�.

Next, let us consider frame shuffling attacks, in addition
to frame removal and insertion attacks. In Eqs. �3� and �5�,
we impose the monotonicity constraint that the matching
function for matched frames is monotonically increasing,
and shuffled frames hence can be classified as unmatched
frames. Therefore, when Xj is classified as unmatched, it
can be further matched to a frame in Y, which is not
matched by the function in Eq. �3�. More specifically, �*�j�
is refined by

�*�j� = arg min
k�U

dm�j,k� if min
k�U

dm�j,k� � du�j� , �6�

where U denotes the indices of frames in Y that are not
matched by Eq. �3�. Notice that we reduce the total match-
ing cost by changing the category of Xj from an unmatched
frame to a shuffled frame when its matching cost is smaller
than the unmatched cost.

temporal alignment between two sequences.

5 6 7 8 9

0 7 9 8 10
es the
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Experimental Results
he performance of the proposed algorithm is evaluated
sing five common intermediate format �CIF� sequences
oreman, Paris, Mobile, Tempete, and Carphone, each of
hich consists of 100 frames. We also use 33,220 video

lips, selected from 20 Korean movies.12 Each clip consists
f 100 frames of resolution 360	240, and has a frame rate
f either 24 or 30 frames per second. Thus, 3,322,500
rames are used in total.

To match a video clip with another clip, we minimize
he total cost in Eq. �3�. It can be shown that the dynamic
rogramming method requires also O�lXlY� recursion steps.
e use a personal computer with an Intel Pentium D

-GHz processor for simulations. To match a video clip of
00 frames to another clip, the proposed algorithm requires
bout 5.32 ms for the dynamic programming method.

Table 2 shows the matching error probabilities. A match-
ng error probability is defined as the rate of an estimated
atching function being different from the true matching

unction. The sequences are compressed by the H.264/AVC
tandard with QP 20 and 35, which yield about 42.0 and
0.8 dB peak signal-to-noise ratios �PSNRs� on average,
espectively. The sequences then go through frame removal
ttacks �R�, frame insertion attacks �I�, and frame shuffling
ttacks �S�. The numbers of removed and inserted frames
re randomly selected from 1 to 10 and from 1 to 3 ��R
10 and �I=3�, respectively. An inserted frame is con-

tructed by averaging two adjacent frames in the original
equences. For shuffling attacks, the number of pairs of
djacent frames is randomly selected from 1 to 3 ��S=3�,
nd each pair of frames swaps their places.

We compare the performance of the proposed algorithm
ith those of Cheng’s algorithm5 and the LMMC approach.

n Ref. 5, frame shuffling attacks are not considered, and
he matching fails under these attacks. Since the weights for
he two-frame integration model are overparameterized for
nsertion attacks, matching errors occur even when QP is as
ow as 20. The LMMC approach is also vulnerable to in-
ertion attacks, since it simply searches the best matching
rame for each individual frame. On the other hand, the
roposed algorithm provides much better performance by
lobally minimizing the total matching cost. For example,
hen QP is 35 and frame removal and insertion attacks are

ombined �R+ I�, the matching error probability of the pro-
osed algorithm �=0.10% � is about 41 times lower than
hat of LMMC �=4.11% � and about 21 times lower than

Table 2 Comparison of matching error probabil
frame removal �R�, insertion �I�, shuffling �S�, a

H. 264/AVC

Algorithm QP R

Cheng5 20 0.00
35 0.03

LMMC 20 0.27
35 1.71

Proposed 20 0.00
35 0.00
ournal of Electronic Imaging 010504-
that of Cheng’s algorithm �=2.12% �. As QP increases, the
qualities of modified videos degrade and the matching error
probabilities get higher. However, the proposed algorithm
provides significantly better performance than the conven-
tional algorithm, even in these severe conditions.

5 Conclusion
We propose a temporal alignment algorithm between two
video sequences, when a video is modified from the other
through frame removal, insertion, and shuffling attacks as
well as data compression attacks. We define a cost function
for global matching errors and develop a dynamic program-
ming algorithm to minimize cost efficiently. Experimental
results show that the proposed algorithm provides a signifi-
cantly lower probability of matching errors than the con-
ventional algorithm.

Acknowledgment
This work was supported partly by the Ministry of Knowl-
edge Economy, Korea, under the Information Technology
Research Center support program supervised by the Insti-
tute of Information Technology Advancement �grant num-
ber IITA-2008-C1090-0801-0017� and partly by the Korea
Science and Engineering Foundation �KOSEF� grant
funded by the Korea government �MEST� �number R01-
2008-000-20292-0�.

References
1. Z. Li, L. Gao, and A. K. Katsaggelos, “Locally embedded linear

subspaces for efficient video indexing and retrieval,” Proc. IEEE Intl.
Conf. Multimedia Expo, pp. 1765–1768 �2006�.

2. J. Yuan, W. Wang, J. Meng, Y. Wu, and D. Li, “Mining repetitive
clips through finding continuous paths,” Proc. ACM Intl. Conf. Mul-
timedia, pp. 289–292 �2007�.

3. E. Grimson, P. Viola, O. Faugeras, T. Lonzano-Perez, T. Poggio, and
S. Teller, “A forest of sensors,” Proc. DARPA Image Understanding
Workshop 1, 45–50 �1997�.

4. D. Delannay, C. de Roover, and B. Macq, “Temporal alignment of
video sequences for water-marking systems,” Proc. SPIE 5020, 481–
492 �2003�.

5. H. Cheng, “Temporal registration of video sequences,” Proc. ICASSP
3, 489–492 �2003�.

6. Y. Y. Lee, C. S. Kim, and S. U. Lee, “Video fingerprinting based on
frame skipping,” Proc. ICIP 1, 2305–2308 �2006�.

8. E. T. Lin and E. J. Delp, “Temporal synchronization in video water-
marking,” IEEE Trans. Signal Process. 52, 3007–3022 �2004�.

10. V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions and reversals,” Sov. Phys. Dokl. 10, 707–710 �1966�.

11. G. Navarro, “A guided tour to approximate string matching,” ACM
Comput. Surv. 33�1�, 31–88 �2001�.

12. Y. Y. Lee, “Temporal feature modulation for video watermarking,”
PhD Thesis, Seoul National University, Korea �2008�.

en a video is modified from its original through
a compression attacks.

Temporal attacks �%�

I R+ I R+ I+S

0.46 0.66 N/A
1.75 2.12 N/A
0.51 0.59 0.59
3.43 4.11 4.12
0.00 0.00 0.00
0.09 0.10 0.17
ities wh
nd dat
Jan–Mar 2009/Vol. 18(1)3

http://dx.doi.org/10.1109/TSP.2004.833866

