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Abstract. Design of fusion rule is an important step in fusion process. Traditional single fusion rules are inflexible
when they are being used to fuse feature-rich images. To address this problem, an adaptive multistrategy image
fusion method is proposed. Its flexibility lies in the combination of a choose-max strategy and a weighted average
strategy. Moreover, the region-based characteristics and the shift-invariant shearlet transform (SIST)-based
activity measures are proposed to guide the selection of strategies. The key points of our method are:
(1) Window-based features are extracted from the source images. (2) Use of the fuzzy c-means clustering algo-
rithm to construct a region map in the feature difference space. (3) The dissimilarity between corresponding
regions is employed to quantify the characteristic of regions and the local average variance of the SIST coef-
ficients are considered as activity measures to evaluate the salience of the related coefficient. (4) The adaptive
multistrategy selection scheme is achieved by a sigmoid function. Experimental results show that the proposed
method is superior to the conventional image fusion methods both in subjective and objective evaluations.© 2014
SPIE and IS&T [DOI: 10.1117/1.JEI.23.5.053011]
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1 Introduction
With the advance of imaging sensors and microelectronics,
multimodality image fusion has emerged as a new and prom-
ising research area. With a proper fusion rule, multimodality
images are combined into a single composite (i.e., fused
image) for human and machine perception or further image
processing tasks such as segmentation, feature extraction,
and target recognition.1,2 Therefore, an effective fusion rule
will improve the quality of a fused image.

At present, the most commonly used fusion rules can be
divided into two types: the choose-max strategy and the
weighted average strategy. For example, Zheng et al.3 com-
bined the multiple sets of low/support value components
using the choose-max strategy and the weighted average
strategy. In Ref. 4, the detail subbands are combined by
the choose-max strategy using a standard deviation measure
and the approximation subbands are combined with the
weighted average strategy with entropy measure. Li et al.5

applied homogeneity similarity for a multifocus image
fusion, in which the absolute-maximum-choosing strategy
and the average strategy are employed to fuse the detail
and approximation subbands, respectively. Moreover, the
choose-max strategies with a fire map of a pulse-coupled
neural network are often used to fuse the subband coeffi-
cients.6,7 In addition to these pixel-based methods, several
researchers argued that the fusion process based on regions
is more robust and more easily to expresses the local struc-
tural characteristics of objects.8,9 Therefore, many region-
based fusion methods have also been proposed in recent
years. Correspondingly, the above-mentioned fusion rules
have been widely extended into a region-based fusion
method. For instance, Piella proposed a choose-max strategy
using a local correlation measure to perform fusion of each

region.8 In Ref. 10, the priority of a region measured by
energy, variance, or entropy of the regional wavelet coeffi-
cients is used to weight a region in the fusion process. In
Ref. 11, Li and Yang fused the corresponding regions by
the choose-max strategy with spatial frequencies (For sim-
plicity, we call the method RSSF.).

It is evident that all the above-mentioned image fusion
methods used only a single fusion rule to fuse all high/
low-frequency subband coefficients or pixels. However,
there are different dynamic ranges and correlations in the
source image, and a single fusion rule may decrease the
contrast of the fused image. A recent trend is multistrategy
fusion rules. Examples include the works in Refs. 12 and 13,
which employed a similarity index and threshold to distin-
guish the type of region between source images. Both the
weighted average strategy and the choose-max strategy were
employed. The former focuses on redundant information and
the latter focuses on complementary information. Further-
more, to avoid tuning the threshold, Luo et al.14 used struc-
tural similarity (SSIM) to identify the type of region which
further guides the selection of the fusion strategy.

Although the above multistrategy fusion methods have
enhanced the quality of image fusion to some extent, there
are still some drawbacks in the fusion process. First, for the
redundant regions, when the redundant degree of the regions
is large, the weighted average strategy is degenerated into the
average strategy. On the contrary, when the redundant degree
of regions is small, it reduces to the choose-max strategy.
Therefore, the redundant degree of the regions should be
considered in the weighted average strategy. Second, the
source images endow with not only the local structural
characteristics, but also the activity measure of individual
coefficients. If the above two aspects are considered in the
selection of a multistrategy fusion rule, the performance of
the fused image will be more effective.
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In this paper, an adaptive multistrategy image fusion
method is proposed. The whole architecture is constructed
with a data plane and a feature plane. In the data plane,
source images are decomposed into low-frequency coeffi-
cients and high-frequency coefficients with a shift-invariant
shearlet transform (SIST). Since the low-frequency coeffi-
cients denote only the approximate information, the choose-
max strategy with the local average energy is simply adopted
to fuse them. Additionally, the high-frequency coefficients
represent a lot of detailed information. Thus, a multistrategy
fusion rule combined with the choose-max and weighted
average strategies is executed to fuse these coefficients. In
the feature plane, to incorporate the two strategies, source
images are partitioned into several windows and the corre-
sponding features are extracted, then these windows are clus-
tered into regions. Moreover, the dissimilarity of regions and
SIST-based activity measures are fed into a sigmoid function
to achieve a flexible multistrategy fusion rule. The detailed
diagram is depicted in Fig. 3.

The method consists of four main stages to: (1) obtain
the region map; (2) quantify the characteristics of corre-
sponding regions and distinguish the type of corresponding
regions; (3) calculate the activity measure of the SIST
coefficients; and (4) connect the fusion strategy selection
with the characteristics of corresponding regions and the
SIST-based activity measures by a sigmoid function. This
paper is the extended version of our recent conference
paper in International Conference on Pattern Recognition
(ICPR).15

The remainder of this paper is organized as follows.
Section 2 briefly reviews the principle of SIST. In Sec. 3, the
framework of the proposed method is described. Section 4
explains how to obtain the region map. Section 5 discusses
how to quantify the characteristics of corresponding regions
and distinguish the type of corresponding regions. The pro-
posed fusion rule is described in Sec. 6. Finally, a discussion
of experimental results and conclusions is drawn in Secs. 7
and 8, respectively.

2 Principle of SIST
Wavelets are very efficient only when dealing with point-
wise singularities. In higher dimensions, other types of sin-
gularities are usually present or even dominant, and wavelets
are unable to handle them very efficiently. In order to over-
come this limitation of traditional wavelets, their directional
sensitivity has to be increased. SIST is one of the state-of-
the-art multiscale decomposition means which has a rich
mathematical structure similar to wavelet and the true two-
dimensional (2-D) sparse representation for images with
edges and a shift-invariance.16,17

The SIST can be completed in two steps: multiscale
partition and directional localization. In the first step, the
shift-invariance, which means less sensitivity to the image
shift, can be achieved by the nonsubsampled pyramid filter
scheme in which the Gibbs phenomenon is suppressed to
a great extent as a result of replacing down-samplers with
convolutions. In the second step, the frequency plane is
decomposed into a low-frequency subband and several

Fig. 1 Illustration of decomposing image zoneplate into two levels by SIST. (a) Zoneplate (256 × 256).
(b) The approximate SIST coefficients at level 2. (c) Images of the detailed coefficients at level 1.
(d) Images of the detailed coefficients at level 2.
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trapezoidal high-frequency subbands by the shift-invariant
shearing filters. To intuitively illustrate the principle of SIST
and show its superiority in contrast to stationary wavelet
transform (SWT), their two-level SIST and SWT decompo-
sitions of the zoneplate image are shown in Figs. 1 and 2,
respectively. Here, the basic function of SWT is set as
Symlets 4 (sym4) and the SIST parameter determining the
number of directions is defined as [2, 3], so the direction
numbers for each scale from coarse to fine are 6 and 10.

3 Framework of Proposed Method
Since this paper focuses on the research of image fusion,
we assume that the source images to be fused have been geo-
metrically registered. The system diagram of the proposed

method is depicted in Fig. 3. The general procedure of
the proposed method can be divided into a feature plane
and a data plane.

In the feature plane, the procedure is summarized as
follows:

1. The source images A and B are divided into M ×M
windows wA

i and wB
i (1 ≤ i ≤ num), where num is the

number of windows in an image. The features of wA
i

and wB
i (fAi and fBi ) are extracted and the difference

between them is symbolized as f̂i. The detailed def-
initions of fAi and fBi are given in Sec. 4.1.

2. The region map can be obtained by segmenting the
feature vectors f̂i using fuzzy c-means (FCM).

Fig. 2 Illustration of decomposing image zoneplate into two levels by SWT. (a) The approximate SWT
coefficients at level 2. (b) Images of the detailed coefficients at level 1. (c) Images of the detailed
coefficients at level 2.

Fig. 3 Image fusion method using region segmentation and sigmoid function.
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3. The region map is mapped into the source images A
and B, and then the characteristics of corresponding
regions (i.e., the dissimilarity) are calculated.

In the data plane, the procedure is summarized as follows:

1. The source images A and B are decomposed by SIST.
Let LA and LB be the low-frequency coefficients of
A and B, respectively. Then, let HA and HB be the
high-frequency coefficients of A and B, respectively.
LF is the fused low-frequency coefficients and HF is
the fused high-frequency coefficients.

2. The high-frequency decomposition coefficients are
fused by the adaptive multistrategy fusion rule with
a sigmoid function which is parameterized by the
dissimilarity calculated from the feature plane and
the SIST-based activity measures. The low-frequency
decomposition coefficients are simply fused by the
choose-max strategy with the local average energy.

3. Finally, the fused image F is reconstructed by using
inverse SIST.

In the following subsections, the proposed algorithm is
explained in detail.

4 Generation of Region Map
In this section, we explain how to generate the region map.
First, the source images are divided into windows and then
the features of the windows are extracted. Second, the feature
vectors are constructed in the feature difference space. Third,
the region map is obtained by clustering the feature vectors
using FCM.

4.1 Feature Extraction
In the process of feature-level image fusion, an important
step is to extract features from the source images. Since
the sharpness and edges of an image can be represented
by the high-frequency coefficients, the features of windows
are extracted not only from the pixels of a window but also
the high-frequency coefficients of a window. The source
images A and B are decomposed in the first level with
six high-frequency subbands HAj and HBjð1 ≤ j ≤ 6Þ.
A, B, HAj, and HBj are divided into windows wq

i and
Hq

i;jðq ¼ A;B; 1 ≤ i ≤ numÞ. In this paper, the variance18

(Vq
i ), gradient

6 (Gq
i ), and the gray scale (WI

q
i ) of w

q
i
19 are

selected as the features of the spatial domain. The variance18

(HVq
i;j) and energy18 (HEN

q
i;j) of H

q
i;j are extracted as the

features of the SIST domain. These features are defined
as follows:

4.1.1 Variance

The variance reflects the relative degree of dispersion
between the pixels in a window wq

i . Iðx; yÞ is defined as
the pixel intensity located at ðx; yÞ and Vq

i denotes the vari-
ance of window wq

i , therefore, we have

Mean
q
i ¼

1

M ×M

X
x;y∈wq

i

Iðx; yÞ; (1)

Vq
i ¼

1

M ×M

X
x;y∈wq

i

½Iðx; yÞ −Mean
q
i �2: (2)

The calculation of HVq
i;j is similar to Vq

i .

4.1.2 Gradient

The average gradient reflects the clarity and detailed infor-
mation of the window.

Gq
i ¼

1

ðM−1Þ× ðM−1Þ

×
XM−1

x¼1

XM−1

y¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
∂Iðx;yÞ

∂x

�
2

þ
�
∂Iðx;yÞ

∂y

�
2
�
∕2

s
: (3)

4.1.3 Gray scale of window

The gray scale feature of the window is extracted by two
dimensional principal component analysis (2-DPCA), which
was proposed by Yang et al.19 In contrast with the PCA
method, 2-DPCA can avoid reshaping the image window
into an image vector so that the window structure is kept
and the computational complexity is significantly reduced.

For the window set wq ¼ ½wq
1; w

q
2; · · · ; w

q
i ; · · · w

q
num�, the

mean window matrix is defined as

WMq ¼ 1

num

Xnum
i¼1

wq
i : (4)

The covariance matrix of the window set is defined as

WCq ¼ 1

num

Xnum
i¼1

ðwq
i −WMqÞðwq

i −WMqÞT: (5)

The projection matrix P is formed by the eigenvectors
corresponding to the first k largest eigenvalues of WCq.
The window set is projected into eigenspace by

WI
q
i ¼ PTwq

i : (6)

WI
q;k
i is the gray scale feature of window

wq
i ðk ¼ 1;1 ≤ i ≤ numÞ.

4.1.4 Energy

HEN
q
i;j andH

q
i;jðx; yÞ are defined as the energy of SIST coef-

ficients in the window Hq
i;j and the SIST coefficient located

at ðx; yÞ, then we have

HEN
q
i;j ¼

X
x;y∈wq

i

½Hq
i;jðx; yÞ�2: (7)

Next, we use the feature differences of the source images
to construct feature vectors

DVi ¼ absðVA
i − VB

i Þ; (8)

DGi ¼ absðGA
i − GB

i Þ; (9)

DIi ¼ absðWIA;1i −WIB;1i Þ; (10)
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SVi;j ¼ absðHA
Vi;j −HB

Vi;jÞ; (11)

SEi;j ¼ absðHENA
i;j −HENB

i;jÞ: (12)

Each feature vector ~fiðfi ∈ R15; 1 ≤ i ≤ numÞ consists of
15 feature differences

~fi ¼ ½SVi;1; SEi;1; · · · ; SVi;6; SEi;6;DVi;DGi;DIi�: (13)

Let f̂iðf̂i ∈ R15; 1 ≤ i ≤ numÞ be the final normalized
feature vectors.

4.2 Regions Segmentation Using FCM
The feature vectors can reflect the characteristics between
source images. To intuitively illustrate this fact, Fig. 4
shows histograms of SV1 and DG from multifocus clock
images [Figs. 4(a) and 4(b)]. As can be seen in Figs. 4(c)
and 4(d), the distribution of the histograms is continuous,
which means that SV1 and DG have the ability to reflect the
redundancy between source images. The histograms of other
feature differences have the same properties. Considering
the space limitation, these histograms are omitted.

Due to the local correlation of source images, the charac-
teristics of a source are region related. Therefore, the follow-
ing problem is to partition the feature vectors into clusters.
Considering the fact that fuzzy clustering techniques have
been effectively used in image processing, the FCM algo-
rithm,20 a well-known fuzzy clustering method, is adopted
to cluster the feature vectors in this paper.

Assume that the number of clusters is c. The member-
ship of the feature vector f̂i in the r’th cluster is labeled
as μriðμri ∈ ½0;1�; 1 ≤ r ≤ c; 1 ≤ i ≤ numÞ. If μri>μr0i
ðr;r0¼1;2; ···;c;r≠r0Þ, then f̂i belongs to the r’th cluster.
As a result, the feature vectors f̂ are partitioned into c
groups, i.e., the region map R¼fR1;R2; · · · ;Rr; · · · ;Rcg.
In this paper, let the number of clusters be 10 and let
the size of window be 4 × 4 by the cross-validation tech-
nique. The discussions about the tuning of the parameters
are given in Sec. 7.3.

5 Quantization of Region Characteristics
The characteristic of corresponding regions can be quantified
by the dissimilarity, which reflects the complementarity. In
theory, the feature vector of fully redundant corresponding
windows should be f̂i ¼ ½0;0 · · · ; 0�. Therefore, the dissimi-
larity of the corresponding region can be calculated as

Fig. 4 The histograms of feature differences (SV1 and DG) and the region map of multifocus clock
images: (a) left focus clock image, (b) right focus clock image, (c) the histogram of SV1, (d) the histogram
of DG, and (e) the region map using the proposed method.
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dr ¼
P

iϵRr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
15
h¼1 ðf̂ihÞ2

q
VðRrÞ

; (14)

where VðRrÞ represents the number of feature vector of
region r. The higher the values of dr, the higher the
complementarity is. To identify the redundancy or comple-
mentarity of a corresponding region, the complementary
seed region is defined as the region with the largest dr
value (dmax) and the redundant seed region is defined as
the region with zero feature vectors (dmin). Thus, the dis-
similarity of the redundant seed region is 0 (dmin ¼ 0).
Let d ¼ ½dmin; d1; · · · ; dr; · · · ; dc�. If d is normalized, then
dmax ¼ 1 and dmin ¼ 0 (drϵ½0;1�). Denoting distmax r as the
distances of dr to dmax and distmin r as the distances of dr to
dmin, then

distmax r ¼ dmax − dr; (15)

distmin r ¼ dr − dmin: (16)

All distances can be denoted as

distmax ¼ fdmax 1; dmax 2; · · · · · · ; dmax cg; (17)

distmin ¼ fdmin 1; dmin 2; · · · · · · ; dmin cg: (18)

According to the comparison of distmax r and distmin r, all
regions are labeled as near-dmax or near-dmin

near − dmax∶

Rmax¼ fdmin r ≥ dmax rjRrϵR ≡ dr ≥ 0.5g
¼ fRmax 1; Rmax 2; · · · · · · ; Rmax n1g; (19)

near − dmin∶

Rmin¼ fdmin r < dmax rjRrϵR ≡ dr < 0.5g
¼ fRmin 1; Rmin 2; · · · · · · ; Rmin n2g: (20)

Then the regions are divided into n1 complementary parts
(Rmax) and n2 redundant parts (Rmin), where n1þ n2 ¼ c.

Figure 4(e) shows an example of the region map between
Figs. 4(a) and 4(b), in which the regional attributes are
represented using the different gray scale (Rmax → 255,
Rmin → ½0;255Þ). The points with stronger brightness
express more dissimilarity (i.e., complementarity).

6 Proposed Fusion Rule
Generally speaking, the purpose of image fusion is to pre-
serve all useful information in the source images. In this sec-
tion, we first briefly review the related knowledge then the
details of our proposed multistrategy fusion rule are given.

6.1 Related Knowledge
6.1.1 Commonly used fusion strategy

The multistrategy fusion rule includes two commonly used
fusion strategies, i.e., the choose-max fusion strategy and the
weighted average fusion strategy, which can be described
using Eqs. (21) and (22), respectively.

The choose-max fusion strategy can be written as

CFðx; yÞ ¼
�
CAðx; yÞ aAðx; yÞ ≥ aBðx; yÞ
CBðx; yÞ aAðx; yÞ < aBðx; yÞ ; (21)

where CFðx; yÞ is the fused coefficient located at ðx; yÞ and
CAðx; yÞ and CBðx; yÞ are the coefficients of source images
located at ðx; yÞ. aAðx; yÞ and aBðx; yÞ are the activity mea-
sures of CAðx; yÞ and CBðx; yÞ. The salient feature of the
coefficient (e.g., variance or gradient) is expressed by the
so-called activity. The coefficient with a higher activity mea-
sure contains richer information than the others. It should
be directly selected as the fused coefficient.

The weighted average fusion strategy can be written as

CFðx; yÞ ¼ W1CAðx; yÞ þW2CBðx; yÞ;
W1 þW2 ¼ 1;

(22)

where the weighted factorsW1 andW2 are calculated accord-
ing to the specific task.

In general, when the source images are complementary,
the choose-max strategy should be applied. Otherwise, the
weighted average strategy should be employed.

6.1.2 Sigmoid function

A sigmoid function is a mathematical function having an “S”
shape (sigmoid curve),18 which is shown in Fig. 5 and is
defined as

Sfðk; eÞ ¼ 1

1þ exp½−k lnðeÞ� ; (23)

where k is the shrink factor and e is the variable; they jointly
control the shape of the sigmoid curve.

We plot the sigmoid function Sf with different shrink
factors k and e in Fig. 5. The shrink factor k controls the
steepness of the sigmoid curve. There is a pair of horizontal
asymptotes as e → �∞. For the same k, when e is very
large or very small, Sf approaches Sf ¼ 1 or Sf ¼ 0.
However, when e is closer to 1, Sf approaches Sf ¼ 0.5.
For the same e, when k ¼ þ∞, Sf is equivalent to

Fig. 5 Sigmoid curve with different shrink factors k and e.
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ð1∕2Þ þ ð1∕2Þsgnðe − 1Þ, where sgnð·Þ is the sign function.
When k ¼ 0, Sf is equivalent to 0.5.

As can be seen from Fig. 5, the sigmoid function plays
two roles: the selection role and the weighted average
role, which are determined by k and e. This phenomenon
is exactly in line with the choose-max strategy and the
weighted average strategy. Moreover, k and e can be repre-
sented by the characteristic of the corresponding regions and
the difference of activity measures of the corresponding coef-
ficients. Therefore, using the sigmoid function to design
a multistrategy fusion rule is appropriate.

6.2 Fusion of the Low-Frequency Subbands
The energy of the source image focuses on the low frequency
part and the adjacent coefficients of the source image retain
local correlation. Therefore, to get a high-contrast outcome,
the low-frequency subbands are fused by the choose-max
strategy with the local average energy in the proposed
method

LFðx; yÞ ¼
�
LAðx; yÞ EAðx; yÞ ≥ EBðx; yÞ
LBðx; yÞ EAðx; yÞ < EBðx; yÞ ; (24)

EIðx; yÞ ¼ 1

L2

XxþbL∕2c

wi¼x−bL∕2c

XyþbL∕2c

wj¼y−bL∕2c
½LIðwi; wjÞ�2;

I ¼ A orB; (25)

where LFðx; yÞ denotes the fused low-frequency subband
coefficient located at ðx; yÞ, LAðx; yÞ and LBðx; yÞ are the
low-frequency subband coefficients of the source images
located at ðx; yÞ. EAðx; yÞ and EBðx; yÞ are the local average
energies of LAðx; yÞ and LBðx; yÞ, which can be calculated
by Eq. (25). L is the size of the local window. Our purpose is
to maximally preserve the useful information of the source
images.

6.3 Fusion of the High-Frequency Subbands
Since high-frequency subbands tend to contain a lot of image
details (such as edges, area boundaries, and so on), the qual-
ity of the fusion rule for the high-frequency subband coef-
ficients will obviously affect the fused result. To enhance
the quality of the fused image, an adaptive multistrategy
fusion rule with a sigmoid function is designed as follows:

HFsr;jðx; yÞ ¼ w1H
A;S
r;j ðx; yÞ þ w2H

B;S
r;j ðx; yÞ;

w1 ¼
1

1þ expf−kr ln½eSr;jðx; yÞ�g
;

w2 ¼ 1 − w1 ¼
expf−kr ln½eSr;jðx; yÞ�g

1þ expf−kr ln½eSr;jðx; yÞ�g
;

eSr;jðx; yÞ ¼
EA;S
r;j ðx; yÞ

EB;S
r;j ðx; yÞ

; (26)

where HFSr;jðx; yÞ represents the fused high-frequency sub-
band coefficient located at ðx; yÞ of the S’th level and j’th
high-frequency subband for the r’th region. HAS

r;jðx; yÞ and
HBS

r;jðx; yÞ have similar meanings. The weight w1 is calcu-
lated by the sigmoid function, where kr is the shrink factor

and eSr;jðx;yÞ is the variable. To achieve the adaptive multi-
strategy fusion rule, kr and eSr;jðx; yÞ should be image
dependent.

Considering the local correlation of pixels, the shrink fac-
tor based on the region is defined as the characteristics of
the corresponding regions Sr. Let E

A;S
r;j ðx; yÞ and EB;S

r;j ðx; yÞ
represent the activity measures of the high-frequency
coefficients located at ðx; yÞ of the S’th level and the j’th
high-frequency subband for the r’th region of images A and
B, respectively. Thus, their ratio eSr;jðx; yÞ represents the dif-
ference of activity measures of the corresponding coefficients.
kr and eSr;jðx; yÞ determine the role of the combining strategy.
We discuss their details in the following subsections.

6.3.1 Discussion of the kr
With the same eSr;jðx; yÞ, the role of the sigmoid function is
determined by kr, which controls the steepness of the sigmoid
curve. The selection of a strategy depends on the character-
istic of the corresponding regions, therefore, we establish
its connection with kr by 0 ≤ kr ≤ þ∞, 0 ≤ dr ≤ 1,

Fig. 6 The relationship between dr ð0 ≤ dr < 0.5Þ and kr .

Fig. 7 The relationship between dr ð0 ≤ dr < 0.5Þ and W 1.
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kr ¼ þ∞; if 0.5 ≤ dr ≤ 1; (27)

kr ¼ a � ln
�
1þ 2dr
1 − 2dr

�
; if 0 ≤ dr < 0.5; (28)

where a is a positive parameter and is fixed at 100 in the
proposed method. When 0.5 ≤ dr ≤ 1, it means that the cor-
responding regions are complementary and the choose-max
strategy should be adopted for these regions. This status is
equivalent to the sigmoid function with kr ¼ þ∞. When
0 ≤ dr < 0.5, it means that the corresponding regions are
redundant and the weighted average strategy should be
employed. This status is equivalent to the sigmoid function
with the kr as Eq. (28).

We then plot the relationship between drð0 ≤ dr < 0.5Þ
and kr in Fig. 6. As shown in Fig. 6, the value of kr increases
with the increase of dr. Moreover, we plot the sigmoid func-
tion w1 with different a dr in Fig. 7. As can be seen from
Fig. 7, for the redundant corresponding regions, with the
increase of dr, the sigmoid function becomes steeper. This
change means that the fusion rule is gradually transformed
from the weighted average strategy to the choose-max strat-
egy. In this way, not only the type of region (complementarity
or redundancy) but also the redundant degree is considered.

6.3.2 Calculation of e

With the same kr, the variable eSr;jðx; yÞ also affects the
selection of the fusion strategy. According to the previous

discussion, the difference of activity measures of the corre-
sponding high-frequency coefficients plays an important
role in the strategy selection. Then, the eSr;jðx; yÞ can be
calculated as follows:

MeanI;Sr;j ðx; yÞ ¼
XxþbL∕2c

wi¼x−bL∕2c

XyþbL∕2c

wj¼y−bL∕2c
HI;S

r;j ðwi; wjÞ; (29)

VI;S
r;j ðx; yÞ ¼

1

L2

¼
XxþbL∕2c

wi¼x−bL∕2c

XyþbL∕2c

wj¼y−bL∕2c
½HI;S

r;j ðwi; wjÞ−MeanI;Sr;j ðwi;wjÞ�2;

(30)

EI;S
r;j ðx; yÞ ¼

1

L2

XxþbL
2
c

wi¼x−bL
2
c

XyþbL
2
c

wj¼y−bL
2
c
VI;S
r;j ðwi; wjÞ; (31)

eSr;jðx; yÞ ¼
EA;S
r;j ðx; yÞ

EB;S
r;j ðx; yÞ

; I ¼ A orB; (32)

where L is the size of the local window. MeanI;Sr;j ðx; yÞ and
VI;S
r;j ðx; yÞ are the mean and variance of the local window

centered at HI;S
r;j ðx; yÞ. EI;S

r;j ðx; yÞ is the averaged variance of

Fig. 8 The segmentation and fused results of multifocus images. (a) AVE, (b) PCA, (c) SIST, (d) GFFC,
(e) the region map of RSSF, (f) RSSF, (g) the region map of RF_SSIM, (h) RF_SSIM, (i) the proposed
method with kr ¼ þ∞, (j) the proposed method with kr ¼ 80, and (k) the proposed method.
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the local window, which takes into account the neighbor
dependency and can be considered as the activity measure of
HI;S

r;j ðx; yÞ. Their ratio eSr;jðx; yÞ represents the difference
of the corresponding coefficients. When the difference is
large, it means that the corresponding coefficients are

complementary and the choose-max strategy should be
adopted. This status is equivalent to the sigmoid function
with a very large or very little eSr;jðx; yÞ. When the difference
is little, it means that the corresponding coefficients are
redundant and the weighted average strategy should be

Table 1 Objective comparison of fused results with different methods for multifocus images.

Methods G EI MI EN RCE Qabf IQM

AVE 8.8557 48.4706 7.1943 6.6776 0.9259 0.6185 0.9671

PCA 8.8535 48.4498 7.4022 6.7528 0.7806 0.6171 0.9671

SIST 11.1797 65.7593 6.0321 7.2171 1.2434 0.6646 0.9689

GFFC 10.6486 60.9055 6.2144 7.2683 0.8763 0.6752 0.9622

RSSF 11.0507 65.1473 7.2311 5.9230 0.0116 0.6743 0.9751

RF_SSIM 4.7832 44.5113 7.1210 7.2644 0.0507 0.5904 0.9671

kr ¼ þ∞ 11.2225 65.7157 6.2069 7.2696 0.8364 0.674 0.9768

kr ¼ 80 11.2185 65.7035 6.2107 7.2665 0.8325 0.6755 0.9769

The proposed method 11.3646 66.7428 6.3394 7.2767 0.8270 0.6843 0.9770

Note: The bold values represent the best results.

Fig. 9 Parts of Fig. 4(b) and the fused results of Figs. 8(a), 8(b), 8(c), 8(d), 8(f), 8(h), and 8(k) and the
subtraction between parts of Fig. 4(b) and parts of the fused results of Figs. 8(a), 8(b), 8(c), 8(d), 8(f), 8(h),
and 8(k). (a) imageA_detail, (b) AVE_detail, (c) AVE_sub, (d) PCA_detail, (e) PCA_sub, (f) SIST_detail,
(g) SIST_sub, (h) GFFC_detail, (i) GFFC_sub, (j) RF_SSIM_detail, (k) RF_SSIM_sub, (l) RSSF_detail,
(m) RSSF_sub, (n) the proposed method_detail, and (o) the proposed method_sub.
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employed. This status is equivalent to the sigmoid function
with the eSr;jðx; yÞ near 1. This phenomenon can be seen
from Fig. 7.

7 Experimental Results and Analysis
To verify the proposed method, it is compared with conven-
tional and state-of-the-art fusion methods from the stand-
point of visual perception and objective evaluation. The six
compared fusion approaches are average-based (AVE-based)
approach, PCA-based approach,1 SIST-based approach,2,16

RSSF,11 image fusion incorporating Gabor filters and fuzzy
c-means clustering (For simplicity, we call the method
GFFC.),12 and RF_SSIM.14 The choice of these algorithms
is motivated by the following reasons: the typical fusion,
region-based single strategy fusion, region-based multistrat-
egy fusion, recent fusion methods, and easy reproducibility.
Moreover, to demonstrate the superiority of the adaptive

kr, two experiments with the fixed kr (kr ¼ þ∞, 80) are
executed. Furthermore, to test the superiority of SIST, the
proposed method is compared with that using SWT and
nonsubsampling contourlet transform (NSCT).

The quantitative comparison of different fusion algo-
rithms should consider the following aspects: the edge
intensity, the amount of information of the fused image, and
the relationship between the source images and the fused
images. Thus, the following image quality metrics (IQM)21–25

are used in this paper:

1. The gradient (G) metric, which can reflect the clarity
of the fusion image. The larger the G value, the clearer
the fused result is.

2. Edge intensity (EI), which reflects the edge intensity
of the fused image. The larger the EI value, the more
details the fused result has.

Fig. 10 The segmentation and fused results of medical images. (a) MRI image, (b) CT image, (c) AVE,
(d) PCA, (e) SIST, (f) GFFC, (g) the region map of RSSF, (h) RSSF, (i) the region map of RF_SSIM,
(j) RF_SSIM, (k) the proposed method with kr ¼ þ∞, (l) the proposed method with kr ¼ 80, (m) the
region map of the proposed method, and (n) the proposed method.
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3. Mutual information (MI), which reflects the total
amount of information that the fused image inherited
from the source images.

4. Entropy (EN) reflects the amount of information of the
fused image. The larger the EN is, the more informa-
tion the image carries if there is no noise in the image.

5. Overall cross entropy (RCE) is used to calculate the
difference between the source images and the fused
images. The smaller the RCE is, the better the fusion
result that is obtained.

6. The Qabf metric considers the amount of edge infor-
mation transferred from the source images to the fused
images. The larger the Qabf value, the better the fused
result is. It should be as close to 1 as possible.

7. An IQM-based metric, which is designed by modeling
any image distortion as a combination of three factors:
loss of correlation, radiometric distortion, and contrast
distortion. The larger the IQM value, the better the
fused result is. It should also be as close to 1 as possible.

For the SIST-based method and the proposed method, the
pyramid filter of SIST is set as “maxflat (maximally flat fil-
ter)” and the source images are decomposed into four levels
with the number of directions 6, 6, 10, and 10. Furthermore,
the number of clusters c ¼ 10, the size of the window M ×
M ¼ 4 × 4 and the sliding window size L ¼ 5 are applied to
the proposed method. The effects of parameters ðc;M; LÞ on
the proposed method are discussed in Sec. 7.3.

7.1 Experiment 1: Performance Evaluation of
the Proposed Fusion Method

7.1.1 Fusion results of multifocus images

Because the optical imaging cameras cannot capture objects
at various distances all in focus, the multifocus images are
fused to get a fused image with the focused parts of all the
multifocus images. Figures 4(a) and 4(b) are a pair of multi-
focus images which have a common scene structure. Figure 8
and Table 1 show the fused images and evaluation results,
and Fig. 9 shows the detailed blocks (the “6” in the right

clock) of the source images and the fusion results.
Moreover, for a clearer comparison, the subtractions between
the parts of Fig. 4(b) and the parts of the fusion results are
also illustrated in Fig. 9. As shown in Fig. 9, Figs. 9(c) and
9(e) have a lot of residual information, which means that the
traditional fusion methods (the AVE-based method and the
PCA-based method) reduce contrast. This results from the
fact that the AVE-based method just takes the pixel-by-
pixel gray level average of the source images and the
PCA-based method uses the weighted average rule with
the eigenvalues of the covariance of the source images.
Figures 8(c) and 8(f) are the fusion results of the SIST-
based approach and RSSF. These methods employ a single
fusion strategy. Although there is almost no residual infor-
mation in Fig. 9(m), some incorrect fusion blocks are
found in the rectangle region of Fig. 8(f). The reason for
this lies in the fact that some incorrect segmentations worsen
the region-based choose-max fusion rule. For example, as
shown in Fig. 8(e), some pixels located at the upper boun-
dary of the right clock are segmented into different regions.
Figure 8(c) is the fused result of the SIST-based fusion
approach, which adopts a coefficient-based choose-max
fusion rule. Figure 9(g) shows that some information of
Fig. 4(b) is lost in the fusion process. The fusion results
of multistrategy fusion methods (GFFC and RF_SSIM)
are shown in Figs. 8(d) and 8(h). As is evident, the contrast
of the fused images is reduced, especially in Fig. 8(h). This is
further illustrated by Figs. 9(i) and 9(k). This results because
their multistrategy fusion rules ignore the activity difference
among the coefficients in a region. As can be seen from
Fig. 8(k), almost all the useful information of the source
images has been transferred into the fused image by our pro-
posed method. Moreover, we can see from Fig. 9(o) that it is
almost black; this means that the residual image between
Figs. 9(a) and 9(n) is very small. This observation further
illustrates the information integration ability of the proposed
method.

Considering the similar fused results of Figs. 8(i)–8(k),
objective evaluations are performed and the results are listed
in Table 1. It can be concluded that most of the objective

Table 2 Objective comparison of fused results with different methods for medical images.

Methods G EI MI EN RCE Qabf IQM

AVE 3.9869 40.5312 5.2315 5.9196 5.8537 0.4281 0.5799

PCA 5.6102 57.2228 6.3220 6.5953 6.1205 0.6584 0.7228

SIST 7.5993 76.8942 2.1638 6.0246 2.7043 0.7365 0.5920

GFFC 5.0099 49.6637 3.0257 6.0881 3.4530 0.5218 0.5849

RSSF 7.3646 71.2930 4.8933 5.5766 0.8956 0.6156 0.4309

RF_SSIM 3.9554 40.0386 4.5929 5.8168 1.4252 0.4284 0.3186

kr ¼ þ∞ 7.5349 76.5274 2.8973 6.6846 3.5521 0.7352 0.6660

kr ¼ 80 7.5332 76.5101 2.8987 6.6847 3.5476 0.7355 0.6661

The proposed method 7.7319 78.5406 3.3536 6.8597 4.4816 0.7741 0.6798

Note: The bold values represent the best results.
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evaluation results are in reasonable agreement with the visual
effect. For example, the low contrasts of Figs. 8(a), 8(b),
and 8(h) are quantified by the lagging indicators (G, EI,
and Qabf). The fused image of AVE, PCA, RSSF, and
RF_SSIM obtained better results in terms of MI due to
being performed in the spatial domain. RSSF directly copies
original regions from the source images to the result image,
so the pixel distributions of Fig. 8(f) are changed very little.
The best RCE of the RSSF confirms this observation. By
comparison, we can conclude that our proposed method out-
performs the other methods using a regional activity measure
based on a multistrategy fusion rule (GFFC and RF_SSIM).

In addition, the fixed kr (kr ¼ þ∞, 80) and the adaptive
kr are compared. As can be seen from the last three rows of

Table 1, since an adaptive kr makes the fusion strategy flex-
ible, our proposed method with an adaptive kr achieves
higher performances than those with a fixed kr.

Overall, although the result of the proposed method is
slightly inferior to that of PCA in terms of MI and that of
RSSF in terms of RCE, the result is superior to that of other
methods in other terms. This means that the result image
fused by our method contains more details and a greater
amount of information.

7.1.2 Fusion results of medical images

It is easy for physicians to understand the lesion by reading
images of different modalities with a multimodal medical

Fig. 11 The segmentation and fused results of infrared and visual images. (a) Infrared image, (b) visual
image, (c) AVE, (d) PCA, (e) SIST, (f) GFFC, (g) the region map of RSSF, (h) RSSF, (i) the region map of
RF_SSIM, (j) RF_SSIM, (k) the proposed method with kr ¼ þ∞, (l) the proposed method with kr ¼ 80,
(m) the region map of the proposed method, and (n) the proposed method.
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image fusion. For example, fused magnetic resonance
imaging/computed tomography (MRI/CT) imaging can
concurrently visualize anatomical and physiological charac-
teristics of the human body for diagnosis and treatment
planning.26 In this section, the fused results of MRI/CT
are shown in Fig. 10. It is not hard to see that the MRI
[Fig. 10(a)] and CT [Fig. 10(b)] are obviously complemen-
tary, but the MRI contains more information.

By subjective evaluation, the result of the AVE-based
method averaging the source images [Fig. 10(c)] leads to
low contrast. A large amount of information exists in MRI.
The weight with the eigenvalues of the covariance of the
source images is biased toward MRI, thus the fused image
of the PCA-based method [Fig. 10(d)] loses the information
of the CT. Owing to the single choose-max strategy and
the region-based activity measure, as shown in Fig. 10(h),
RSSF is inclined to choose inappropriate regions. Due to
the region based activity measure, the fusion result of
RF_SSIM(a multistrategy fusion method) lacks the contrast.
However, because our method adopts an adaptive multi-
strategy fusion rule which is based on local structural
characteristics and a coefficient-based activity measure, our
result achieves better visual perception.

The objective evaluations are listed in Table 2. It can be
observed that the PCA method wins in terms of MI and IQM.
This is because the PCA method is biased toward MRI and
the amount of information of the MRI is far greater than that
of the CT. The low contrast fused images of AVE, GFFC, and
RF_SSIM yield worse performances in terms of G, EI, and
Qabf; this fact is in line with the visual perception. Our pro-
posed method has the best value in terms of the other four
indices (i.e., G, EI, EN, and Qabf) among all seven indices.

7.1.3 Fusion results of infrared-visual images

Usually, visible images can provide spatial details of the
background of the objects but cannot reveal the objects.
However, infrared images can capture the objects but fail
to reveal some background areas. The fused image displays

both the objects and spatial details of the background, which
is a potential solution for improving target detection.

In Fig. 11, we show an example of the visual-infrared
images. The luminance of the object (the person) in
Figs. 11(c)–11(f) and 11(j) decreases compared with the
infrared image Fig. 11(a). In Fig. 11(d), the object is changed
into black from white. This change is disadvantageous to
subsequent object processing. Although Fig. 11(i) preserves
the luminance of the object and obtains the best values in
terms of MI and Qabf, there are some apparent image stitches
which seriously affect the visual perception. Obviously, our
fused image has a better visual perception than the others.
Moreover, our method also outperforms the others in terms of
G, EI, and EN, which are given in Table 3. For the MI, our
method gets the largest value except for those of PCA and
RSSF. Furthermore, the objective evaluation confirms that
the proposed method with an adaptive kr is superior to the
method with a fixed kr in the fusion of infrared-visual images.

It should also be noticed that the improved performance
of the proposed method is at the cost of an increasing com-
putation complexity. As shown in the last column of Table 3,
the consumed time of the proposed method is more than
those of the other fusion methods. The increased time is
mainly the result of the computation of the region map and
the activity measure. This may limit its application in some
real-time cases.

7.1.4 Fusion results of other images

To further evaluate the proposed method’s robustness, a
series of image fusion experiments are performed on five
pairs of source images. Considering the limitation of space,
Fig. 12 only shows the source images, the region maps, and
the fused results of the proposed method. Moreover, in
Table 4, only the fused results obtained by GFFC, RSSF,
RF_SSIM, and the proposed method with kr ¼ 80 and kr ¼
þ∞ are given. Since the evaluation indices MI, RCE, and
Qabf depend on the consistency of gray distribution or the
pixel values between the fused images and source images,
the simple copying source region method RSSF wins in

Table 3 Objective comparison of fused results with different methods for infrared and visual images.

Methods G EI MI EN RCE Qabf IQM T (s)

AVE 3.3481 29.9876 1.8725 6.3040 0.6208 0.3401 0.6184 1.2

PCA 5.5246 50.2872 4.3561 6.5213 0.4472 0.4014 0.4947 1.3

SIST 5.6794 51.1528 1.7532 6.6327 0.3762 0.4638 0.6310 5.8

GFFC 3.8845 34.1798 1.8256 6.3391 0.6608 0.3903 0.6224 53.5

RSSF 5.3727 48.9421 6.3428 6.9785 0.1560 0.5844 0.4636 10.2

RF_SSIM 3.6728 31.9834 1.8052 6.3160 0.5977 0.3437 0.5128 20.5

kr ¼ þ∞ 5.6840 51.3021 2.0485 7.0086 0.1486 0.4565 0.5634 63.5

kr ¼ 80 5.6806 51.2826 2.0537 7.0088 0.1489 0.4566 0.5634 60.3

The proposed method 5.7006 51.4643 2.1552 7.0190 0.1488 0.4700 0.5709 90.1

Note: The bold values represent the best results.
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term of these indices. However, the fused result of RSSF
often contains apparent image stitches, which seriously
affect the visual perception. From the other four metrics, the
proposed method provides the best objective data, which
illustrates that more details from the source images are
retained. It has been verified that the proposed adaptive mul-
tistrategy fusion rule is more beneficial for fusion results
than these methods, including the single fusion strategy
(RSSF), multistrategy fusion rules based on regional activity
measure (GFFC, RF_SSIM), and our method with a fixed kr
(kr ¼ þ∞, 80).

7.2 Experiment 2: Advantages of SIST Over
SWT and NSCT

To verify the superiority of SIST, the proposed method is
evaluated in different transform domains [SWT and non-
subsampled contourlet transform (NSCT)] on the multifocus
clock images [Fig. 4(a) and 4(b)] and MRI/CT images
[Figs. 10(a) and 10(b)]. In our experiments, the images
are all decomposed into four levels by SWT (with the
basic function of sym4), NSCT, and SIST. The decomposi-
tion level of NSCT is set as [2, 2, 3, 3]. The pyramid filter
“9-7” (Gaussian or Laplacian pyramid decomposition filter)

Fig. 12 The region map (c) and fused results (d) of source images (a) and (b) for the other five fusion
models.
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Table 4 Objective comparison of fused results with different methods for the other five kinds of images.

Row Methods G EI MI EN RCE Qabf IQM

1 GFFC 2.5030 19.1531 1.7370 4.8796 3.4849 0.5106 0.2429

RSSF 2.9936 24.1457 7.6596 5.3016 2.3407 0.6837 0.3115

RF_SSIM 2.9736 22.4230 1.6876 5.4488 2.2049 0.3707 0.3985

kr ¼ þ∞ 2.9723 24.1265 2.5478 5.8245 2.2976 0.5145 0.4012

kr ¼ 80 2.9712 24.1076 2.5639 5.8312 2.2932 0.5141 0.4011

The proposed method 2.9941 24.6837 2.6638 5.9292 2.2755 0.5291 0.4057

2 GFFC 9.0403 68.9348 7.6037 7.4419 0.0078 0.7739 0.9812

RSSF 9.3988 72.8833 9.4811 7.4563 0.0075 0.7837 0.9894

RF_SSIM 6.3186 55.1418 7.2995 7.4048 0.0079 0.6993 0.9855

kr ¼ þ∞ 9.5975 74.1305 8.8239 7.4511 0.0086 0.7763 0.9894

kr ¼ 80 9.5947 74.1049 8.8302 7.4509 0.0086 0.7760 0.9894

The proposed method 9.6856 74.7176 8.7227 7.4581 0.0094 0.7765 0.9896

3 GFFC 13.5482 101.711 4.7248 7.1364 0.4248 0.6163 0.9096

RSSF 15.3697 120.133 7.9555 7.0803 0.3956 0.7091 0.9080

RF_SSIM 11.8372 90.2916 4.5514 7.1076 0.4468 0.5599 0.9163

kr ¼ þ∞ 16.1784 125.133 4.1323 7.2312 0.3826 0.6361 0.9261

kr ¼ 80 16.1772 125.123 4.1325 7.2322 0.3824 0.6358 0.9261

The proposed method 16.1861 125.161 4.1326 7.2328 0.3823 0.6362 0.9361

4 GFFC 2.3742 20.2089 3.4018 6.2072 2.1039 0.5145 0.6015

RSSF 2.7561 23.9129 7.4507 5.9900 0.4874 0.6290 0.6308

RF_SSIM 2.6396 21.6345 3.1522 5.4524 1.9532 0.4838 0.4430

kr ¼ þ∞ 2.8450 24.7367 3.5270 6.4237 1.7445 0.5405 0.6533

kr ¼ 80 2.8439 24.7304 3.5274 6.4217 1.7415 0.5406 0.6533

The proposed method 2.8539 24.7397 3.5369 6.4395 1.7334 0.5409 0.6533

5 GFFC 9.6882 67.6715 2.7741 7.1743 3.2466 0.5154 0.4027

RSSF 9.5176 74.6358 6.6581 5.9680 1.7514 0.6617 0.4068

RF_SSIM 6.3234 47.2927 3.2792 7.1526 0.9412 0.4007 0.3801

kr ¼ þ∞ 11.3284 83.4447 2.6649 7.5098 3.5562 0.5647 0.4012

kr ¼ 80 11.3264 83.4357 2.6656 7.5097 3.5637 0.5663 0.4036

The proposed method 11.3462 84.4354 2.6659 7.5398 3.4451 0.5775 0.4108

Note: The bold values represent the best results.
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and the directional filter “pkva” (directional filter banks
decomposition filter) are selected in the NSCT domain.
Figures 8(k) and 10(n) show the fusion results of the pro-
posed method using SIST in Figs. 4(a), 4(b), 10(a), and
10(b). Figure 13 shows the fusion results of the proposed
method using SWT and NSCT in Figs. 4(a), 4(b), 10(a),
and 10(b). Tables 5 and 6 provide an objective comparison
among different transformation domains. The results pre-
sented in these tables show that, in general, the proposed
fusion method has the best performance in the SIST domain.
This is mainly because the SIST transform does not restrict
the number of directions for the shearing and its computation
is more efficient than NSCT and SWT.

7.3 Experiment 3: the Effects of Parameters on
the Proposed Method

7.3.1 Effect of the number of clusters on
the proposed method

In this experiment, the effect of the number of clusters on the
performance of the proposed method is investigated. Due to
space limitation, only Figs. 11(a), 11(b), 12(a2), and 12(b2)
are given for examples. The reason is that they represent

two typical kinds of source images: Figs. 11(a) and 11(b)
represent the images with different clarity and different
information, Figs. 12(a2) and 12(b2) represent the same
information but with different clarity. Let M ×M ¼ 4 × 4,
L ¼ 5 and the number of clusters varies from 2 to 50, the
corresponding EN, RCE, and Qabf performance metrics
are plotted in Figs. 14(a), 14(b), and 14(c), respectively.
As the number of clusters increases (c ≥ 10), the EN and
RCE values of the two fused images and the Qabf values
of Figs. 12(a2) and 12(b2) only vary by a small amount.
When the number of clusters is 10, the Qabf values of
Figs. 11(a) and 11(b) achieve their largest values. How-
ever, the time consumption increases with the increase of
the number of clusters. To balance the time consumption
and the quality of image fusion, the number of clusters is
set as 10 in our proposed method.

7.3.2 Effect of window size on the proposed method

Let the window size vary from 4 to 30 under the conditions of
c ¼ 10 and L ¼ 5.

Correspondingly, the values of EN, RCE, and Qabf are
plotted in Figs. 15(a), 15(b), and 15(c), respectively. As

Fig. 13 The fusion results of clock images [e.g., Figs. 4(a) and 4(b)] andmedical images [e.g., Figs. 10(a)
and 10(b)] using the proposed method in different transformation domains. (a) The fusion results of clock
images using the proposed method with SWT. (b) The fusion results of clock images using the proposed
method with NSCT. (c) The fusion results of medical images using the proposed method with SWT.
(d) The fusion results of medical images using the proposed method with NSCT.

Table 6 The advantages of using SIST versus SWT and NSCT [Figs. 10(a) and 10(b)].

The proposed method G EI MI EN RCE Qabf IQM

Using SWT 7.6317 77.4339 4.5546 6.7712 5.2380 0.7412 0.6791

Using NSCT 7.5244 76.3924 3.4962 6.7778 4.3564 0.7660 0.6793

Using SIST 7.7308 78.5406 3.3534 6.8597 4.4816 0.7740 0.6797

Note: The bold values represent the best results.

Table 5 The advantages of using SIST versus SWT and NSCT [Figs. 4(a) and 4(b)].

The proposed method G EI MI EN RCE Qabf IQM

Using SWT 11.3185 66.5561 6.3285 7.2185 0.6949 0.6752 0.9766

Using NSCT 11.3268 66.6764 6.1955 7.3171 0.9228 0.6717 0.9768

Using SIST 11.3644 66.7428 6.3294 7.2767 0.8270 0.6842 0.9770

Note: The bold values represent the best results.
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can be seen, for Figs. 12(a2) and 12(b2), the values of
EN, RCE, and Qabf are stable with the increase of window
size. For Figs. 10(a) and 10(b), the EN value (from 6 to 30)
and the Qabf value (from 4 to 30) vary slightly. However,
the RCE value is volatile. By the statistical analysis of
Figs. 11(a) and 11(b), we can find that the EN metric
has the largest value and the RCE metric shows better
fusion properties when the window size of Figs. 10(a)
and 10(b) is 4. Thus, a window size of 4 × 4 is a reasonable
selection.

7.3.3 Effect of sliding window size on
the proposed method

This experiment explores the effect of sliding window size L
on the performance of the proposed method. With the fixed
window size 4 × 4 and c ¼ 10, the sliding window size
varies from 3 to 23 in Fig. 16. As can be seen from
Fig. 16, the variation of the sliding window size has little
effect on EN, RCE, and Qabf for Figs. 12(a2) and 12(b2).
For Figs. 11(a) and 11(b), the metrics have a small fluc-
tuation with the increase of the sliding window size and

Fig. 15 The effect of the number of clusters on the proposed method. (a) The effect of window size on
EN. (b) The effect of window size on RCE. (c) The effect of window size on Qabf.

Fig. 16 The effect of sliding window size on the proposed method. (a) The effect of sliding window size
on EN. (b) The effect of sliding window size on RCE. (c) The effect of sliding window size on Qabf.

Fig. 14 The effect of the number of clusters on the proposed method. (a) The effect of the number of
clusters on EN. (b) The effect of the number of clusters on RCE. (c) The effect of the number of clusters
on Qabf.
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the best performance is achieved with the condition of
L ¼ 5. Therefore, the sliding window size in our proposed
method is assigned as 5.

8 Conclusion
In this paper, an adaptive multistrategy image fusion method
has been proposed. A multiscale image decomposition tool
and a multistrategy fusion rule are the two key components
in the proposed method. The SIST is adopted as the multi-
scale analysis tool in the proposed image and the source
images are decomposed into low-frequency subbands and
high-frequency subbands. The choose-max fusion strategy
is employed to fuse the low-frequency subbands which con-
tain the approximate information of the source images. An
adaptive multistrategy fusion rule with a sigmoid function
has been proposed to distinguish the attributes of the
high-frequency subbands and can fuse them automatically.
The dissimilarity of corresponding regions and the activity
measure of the high-frequency coefficient are employed to
identify the attributes between the high-frequency coeffi-
cients. These are used as the variables of the sigmoid func-
tion. They determine the curve of the sigmoid function with
different steepnesses, which correspond to the different
fusion strategies. By using the sigmoid function, the adaptive
selection of the fusion strategy is achieved. Several sets of
experimental results demonstrate the validity, flexibility, and
generality of the proposed method in terms of both visual
quality and objective evaluation. It should be noted that
although the proposed method achieves better results, the
computational complexity is a bit high since several tech-
niques have been incorporated into the proposed method.
Thus, how to optimize time consumption will be one of our
future works. The other future work is to investigate more
effective functions for adaptive fusion strategy selection.
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