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Abstract. In recent years, sparse representation-based classification (SRC) has received significant attention
due to its high recognition rate. However, the original SRC method requires a rigid alignment, which is crucial for
its application. Therefore, features such as SIFT descriptors are introduced into the SRC method, resulting in an
alignment-free method. However, a feature-based dictionary always contains considerable useful information for
recognition. We explore the relationship of the similarity of the SIFT descriptors to multitask recognition and
propose a clustering-weighted SIFT-based SRC method (CWS-SRC). The proposed approach is considerably
more suitable for multitask recognition with sufficient samples. Using two public face databases (AR and Yale
face) and a self-built car-model database, the performance of the proposed method is evaluated and compared
to that of the SRC, SIFT matching, and MKD-SRC methods. Experimental results indicate that the proposed
method exhibits better performance in the alignment-free scenario with sufficient samples.© The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.23.4.043007]
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1 Introduction
Sparse representation (SR)1,2 has become a hot topic in
recent years. SR considers a query signal y as a linear rep-
resentation of the columns in A, i.e., y ¼ Axþ e, where A is
the dictionary (each column in A is typically referred to as
an atom), x is a sparse representation coefficient vector over
the dictionary A, and e denotes the noise. In Ref. 3, Wright
et al. presented a new method sparse representation-based
classification (SRC), which achieved high recognition accu-
racy on face recognition. Due to this approach’s promising
performance in image classification, SRC has been widely
used in many pattern recognition applications, such as face
recognition,4,5 gender,6 digit,7,8 biology data,9,10 and medical
image11,12 classification.

For robustness, many methods have been improved and
presented. For handling contiguously occluded face recogni-
tion, such as disguise or expression variation, a modular
weighted global sparse representation method was proposed
in Ref. 13, which divided the image into modules and deter-
mined the reliability of each module based on its sparsity and
residual. Next, a reconstructed image from the modules
weighted by their reliability is formed for robust recognition.
To obtain rotation and scale invariance, in Ref. 14, the
authors constructed a dictionary based on a large number
of vehicle images captured at different angles and distances,
which made the dictionary large scale and the method time
consuming. In Ref. 15, a practical face recognition system
was presented, which gained robustness for registration
and illumination by minimizing the sparsity of the registra-
tion error and capturing a sufficient set of training illumina-
tions for linearly interpolating practical lighting conditions,
respectively. In Ref. 16, the authors presented a block-based

face-recognition algorithm, which is based on a sparse lin-
ear-regression subspace model via a locally adaptive diction-
ary constructed from the past observable data (i.e., training
samples). Though it obtained a high recognition rate, prea-
lignment and a certain scale were always required, i.e., those
methods are more suitable for applications in constrained
environments. To handle the problem of alignment, in
Ref. 17 the authors introduced SIFT descriptors18 to the
SRC framework, and proposed multikeypoint descriptors
SRC (MKD-SRC) method, which has achieved preliminary
success on both holistic and partial face recognition.
Additionally, modified MKD-SRC has been proposed based
on the Gabor Ternary pattern (GTP) descriptors in Ref. 19.
Those two methods may be affiliated to a feature-based
SRC method, which has shown good robustness for align-
ment and affine transform and thus may extend the applica-
tion of SRC. Obviously, a feature-based dictionary is the
core, and it may contain considerable useful information
for recognition, which may be omitted with present methods.

Although several researchers who focus on SRC have
paid attention to the similarity of atoms,20–22 they only use
it to optimize the dictionary rather than to improve the rec-
ognition rate. For example, in Ref. 22, the authors presented
an efficient face recognition algorithm based on the SRC
using an adaptive K-means method, which clustered similar
atoms of the same class and merged them into one atom
while preserving the accuracy. Obviously, the method has
not considered the similarity of the atoms belonging to dif-
ferent classes, which will affect the recognition performance.

In this paper, focusing on the scenario of disguises or par-
tial targets and scale and illumination or expression variation
without alignment, we propose a clustering-weighted SIFT
descriptor-based SRC (CWS-SRC) method.

The remainder of this paper is organized as follows.
Motivation for the proposed method is given in Sec. 2.*Address all correspondence to: Jun He, Email: hejun@bnu.edu.cn
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Section 3 proposes the CWS-SRC method. The experimental
results of the AR database,23 the Yale face database24 and a
self-built car-models database are shown in Sec. 4. The con-
clusions and future research areas are presented in Sec. 5.

2 Motivation
In this section, we first describe the principle of the MKD-
SRC method.17 Given a set of sample images collected from
c different subjects, c subdictionary Akðk ¼ 1; : : : ; cÞ can be
constructed by pooling all of the descriptors extracted from
the samples of each subject, and a gallery dictionary can be
obtained A ¼ ½A1; : : : ;Ac�. A probe image Y can be denoted
with a set of SIFT descriptors, i.e., Y ¼ ½y1; y2; : : : ; ym�,
where yi (i ¼ 1; : : : m) is the i’th probe descriptor. Thus,
the problem of recognition of Y is converted to the problem
of solving a multitask l1-minimization problem:

X̂ ¼ argmin
x

Xm
i¼1

kxik1; s:t: Y ¼ AX; (1)

where each column in A is a descriptor extracted from the
sample images, X ¼ ½x1; x2; : : : ; xm� is the sparse coefficient
matrix, and k · k1 denotes the l1 norm of a vector. Finally,
the following multitask SRC is adopted to determine the
identity of the probe image.

identityðYÞ ¼ argmin
k

rkðYÞ ¼
1

2

Xm
i¼1

kyi − Akδkðx̂iÞk22; (2)

where δk ð:Þ is a function that selects only the coefficients
corresponding to the k’th class, and k · k2 denotes the l2
norm of a vector.

With a SIFT descriptor-based dictionary, MKD-SRC17

has not only successfully resolved the problem of alignment,
but also handled the affine transformation to some extent.
Although several images or even one as samples per subject
are sufficient for face recognition with the MKD-SRC
method,17 this approach may not always work well for a gen-
eral three-dimensional (3-D) target, which may be due to dif-
ferent application requirements. For frontal face recognition,
a few (even one) samples are sufficient. For a general 3-D
target, more sample images are necessary for recognizing
an image in an arbitrary view. For example, for vehicle rec-
ognition, rotation invariance is important and many more
vehicle images taken from different angles are crucial.14

Those are often similar. In such scenarios, there will be more
similar SIFT descriptors. For convenience, similar descrip-
tors in the dictionary are called similar subsets. They will
influence the sparse representation result of the orthogonal
matching pursuit (OMP) algorithm.25 The reason for that
will be deduced next.

It is known that with OMP, the sparsest linear combina-
tion of y is obtained by calculating the correlation and pro-
jecting orthogonally, alternately, and iteratively. OMP selects
the atom with the highest correlation to the current residual at
each step. Once the atom is selected, the signal y is orthogo-
nally projected to the space spanned by the selected atoms.
The residual is subsequently recomputed, and the process is
repeated. Though the most correlated atom is selected in
each iteration, the final linear combination of the atoms may
not be the best representation for y. It seems that such a SIFT
descriptor-based dictionary is far from the requirement of the

restricted isometry property (RIP),26,27 which is discussed in
Ref. 28. However, the distribution of similar descriptors in
classes can characterize their discrimination.29 Therefore,
studying and utilizing the distribution of similar descriptors
to improve recognition performance are beneficial.

3 Proposed Approach
As mentioned in Sec. 2, considerable discriminative informa-
tion may be included in similar SIFT descriptors, which
will affect the recognition rate. To tackle this problem, we
propose a clustering-weighted SIFT descriptor-based SRC
method in this paper.

3.1 Gallery Dictionary Construction
3.1.1 Extracting the SIFT descriptors

Given a set of sample images of c different subjects, we
extract the SIFT descriptors a ∈ R128×118 from them and
subsequently construct the following dictionary:

A ¼ ½a11 · · · aki · · · akMk
· · · acMc

�
¼ ½a1 · · · aT �ðk ¼ 1; · · · ; c; i ¼ 1; · · · ;MkÞ; (3)

where the vector aki denotes the i’th descriptor extracted
from images of the k’th subject, whose total number is
denoted as Mk. Then, T ¼ P

c
k¼1 Mk is the total number

of the atoms in A.

3.1.2 Clustering for each atom in A according to
similarity

In this paper, the similarity is measured by the inner product
s ¼ ai · aj∕jaijjajj. If it is greater than a threshold ts, atoms
ai and aj are treated as similar. For each atom aj in the
dictionary, we clustered atoms similar to it and pooled them
together as a subsetCj. Then, T clustering subsets denoted as
C ¼ fCj ¼ ½a1; : : : ; aGj

�; j ¼ 1; : : : ; Tg are obtained, where
Gj is the number of descriptors in the j’th subset.

3.2 Determining the Weight of the Atoms in
Dictionary A

To resolve the multitask problem, we introduce a weighted-
voting classifier in this paper. The primary challenge is
how to assign the appropriate weight to each atom in the
dictionary.

3.2.1 Relationship between the distribution of
the similar atoms and their weight

After clustering, we obtain T clustering subsets. Similar
atoms in each subset Cj may belong to either the same or
different classes. The distribution of atoms will determine
how discriminative the corresponding atom is in dictionary
A. Consider the extreme case. If the atoms in subset Cj all
belong to the i’th class, atom aj is the most representative
and discriminative for the i’th class. In this instance, if a
probe descriptor only matches this atom via the sparse rep-
resentation, we can deduce that reliably it belongs to the i’th
class. Otherwise, if similar atoms of a subset are distributed
in many classes, a misjudgment is likely to occur.

Therefore, considering the distribution of similar atoms in
a subset, we can infer (1) for sufficient samples, if the atoms
of subset Cj concentrate on the same class as aj, aj can be
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observed as common and representative for that class. The
larger the quantity of the similar atoms in Cj that belong
to the same class as aj, the more important aj is. We call
it intraclass similarity; (2) if a large percentage of similar
atoms belong to a certain class, i.e., the distribution is more
intensive, the corresponding atom can characterize the class
more effectively, and the atom will have greater discrimina-
tion ability. On the contrary, if the distribution is dispersed,
the discrimination ability of the corresponding atom is
smaller. We refer to it as interclass discrimination.

The purpose of the weighted method is to find the
common and representative atoms for each subject and attach
a weight to them. The weight of one atom is determined by
both its intraclass similarity and interclass discrimination,
which will be presented next.

Given a clustering subset Cjðj ¼ 1; : : : ; TÞ and the cor-
responding atom aj, according to Cj, we will determine
a quantity vector: Nj ¼ ½nj1: : : njk: : : njc�T , k ∈ f1; : : : ; cg,
where njk denotes the quantity of the atoms of the k’th
class in the j’th subset Cj. If there is no descriptor of the
k’th class, Nj does not include n

j
k. We determine the weight

of the atom aj by two factors: the intraclass similarity and the
interclass discrimination.

3.2.2 Calculating the intraclass similarity

For the atom aj in A, suppose it belongs to the k’th class,
then its intraclass similarity is proportional to the quantity
of the similar atoms belonging to the k’th class in Cj,
which is denoted as

wj
1 ¼

njk
Pk

; (4)

where Pk ¼ maxfnjkg, j ¼ 1; : : : ; T, i.e., Pk is the largest
quantity of the similar atoms of the k’th class in T clustering
subsets. Thus, wj

1 is between 0 and 1, and can measure the
importance of the atom aj for the k’th class. The larger the
quantity of similar atoms of one class, the more important
the corresponding atom is. If the quantity of similar atoms
of the k’th class is the largest among all classes, the intraclass
similarity is 1; this similarity will be smaller if the quantity of
similar atoms is reduced.

3.2.3 Calculating the interclass discrimination

The interclass discrimination of the atoms is determined by
the distribution of all similar atoms in the corresponding
clustering subset. We adopt the following method to measure
the interclass discrimination of atoms.

wj
2 ¼

kNjk2
kNjk1

: (5)

How does it stand for discrimination? We will examine
this question briefly. For simplicity, in the following equa-
tions, the superscript or subscript j for the j’th clustering
subset is omitted; for example, njk is replaced with nk, N
replaces Nj, etc. Thus, according to the definition of the
norm, Eq. (5) can be written as

w2 ¼
�X

r∈f1;: : : ;cgn
2
r

�1
2∕

X
r∈f1;: : : ;cg

nr: (6)

The average and variance of the elements in N are defined
as

n̄ ¼
P

r∈f1;: : : ;cgnr
kNk0

;

σ ¼
P

r∈f1;: : : ;cgðnr − n̄Þ2
kNk0

. (7)

Using Eq. (7), Eq. (6) becomes

w2 ¼
�P

r∈f1;: : : ;cg½n̄ð2nr − n̄Þ þ ðn2r − 2nrn̄þ n̄2Þ�
�1

2

kNk0n̄

¼

2
64
n̄ð2Pr∈f1;: : : ;cgnr − kNk0n̄Þ þ

P
r∈f1;: : : ;cg

ðnk − n̄Þ2

ðkNk0n̄Þ2

3
75

1
2

¼
"
n̄ · ðkNk0n̄Þ
ðkNk0n̄Þ2

þ 1

kNk0n̄2
·

P
r∈f1;: : : ;cgðnr − n̄Þ2

kNk0

#1
2

¼ 1ffiffiffiffiffiffiffiffiffiffiffikNk0
p �

1þ σ

n̄2

�1
2; ð8Þ

where k:k0 denotes the l0 norm of a vector. Equation (8)
shows that w2 is positively correlated to the variance of N
and negatively correlated to the average and the l0 norm
of N, and its meaning can be highlighted with two extreme
cases: (1) if similar atoms in Cj all belong to the k’th class,
i.e., kNk0 ¼ 1, σ ¼ 0, w2 ¼ 1, the corresponding atom ak is
the most discriminative for the class; (2) if the atoms in Cj
are equally distributed among all classes, i.e., kNk0 ¼ c,
σ ¼ 0, w2 ¼ 1∕

ffiffiffi
c

p
, ak is the least discriminative, and the

discriminative power decreases as the number of classes
increases. Thus, in a clustering subset, Eq. (5) shows the
relationship between the distribution of the atoms over all
classes and the interclass discrimination.

3.2.4 Calculating the weight for each atom

Synthesizing Eqs. (4) and (5), we can measure the weight of aj:

wj ¼ wj
1:w

j
2: (9)

After computing the weights of all atoms in dictionary A,
we can obtain the weight vector as follows:

w ¼ ½w1; w2; : : : ; wT �T: (10)

3.3 Weighted-Voting Classifier
If there are m SIFT descriptors detected for a probe image,
we have

Y ¼ ½y1; y2; : : : ; ym�: (11)

For yiði ¼ 1;2; : : : ; mÞ, we have the following sparse rep-
resentation by the gallery dictionary A.
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x̂i ¼ argmin
xi

kxik1; s:t: yi ¼ Axi; i ¼ 1; : : : ; m : (12)

If yi belongs to some class, the nonzero coefficient in vec-
tor x̂i will be concentrated on that class, i.e., the value of that
class in x̂i is larger.3 In Ref. 17, the authors demonstrated
that the concentration of the sparse representation coefficient
can determine the best matching class. Thus, we have the
following weighted-voting function to determine the identity
of the probe image

max
k

wkðYÞ ¼
Xm
i¼1

kδkðx̂i ∘ wÞk1; k ¼ 1; : : : ; c; (13)

where x̂i ∘ w ¼ ½x̂ij · wj�1×T , j ¼ 1; : : : ; T, which is the
Hadamard product of two vectors.

3.4 Summary
The proposed CWS-SRC method can be summarized as
follows:

1. Extract the SIFT descriptors from the sample images
and construct the dictionary A denoted as Eq. (3).

2. Cluster by similarity and obtain T clustering subsets.
3. Compute the weight of each atom in A using Eq. (9) and

form the weight vector using Eq. (10).
4. Have the sparse representation of each SIFT descriptor

detected in a probe image, and then obtain the identity of
the probe image by taking the SRC result of each
descriptor to the weighted-voting classifier using
Eq. (13).

4 Experiments
In this paper, three databases, i.e., the AR database,23 the
Yale face database,24 and a self-obtained car-model database,
are used for evaluation. A performance comparison among

the proposed methods, the SIFT matching approach,18 the
MKD-SRC method,17 and the original SRC algorithm3 (just
on the occluded image experiment), is conducted. Three
different scenarios are considered: (1) occluded face (AR),
(2) enlarged arbitrary patch extracted from the holistic face
(Yale face database), and (3) different scales and pitch angles
of car-model recognition. Because the interclass discrimina-
tion and intraclass similarity are of primary importance for
the proposed method, sufficient samples for the sparse rep-
resentation dictionary are required. All experiments were
performed on gray images. The SIFT descriptors extracted
from images are of dimension 128. The weight of the
atoms in CWS-SRC method is calculated offline. There-
fore, the speed of the proposed algorithm is up to the scale
of the dictionary.

4.1 Holistic Face Recognition with Occlusion
This experiment was conducted on the AR database. The AR
database contains 120 subjects, including 65 males and 55
females. The images were captured in two different sessions,
with different expressions and occlusions, such as sun-
glasses, scarf, and so on. For each subject, 26 images were
taken, of which 14 images are nonoccluded. We randomly
selected three images from the nonoccluded ones as samples
and all occluded ones as probes. Thus, there were 360 face
images in the sample set and 1440 images in the probe set.
All images were cropped to 128 × 170 pixels. No alignment
has been performed between the probes and the samples.
Some examples of the sample and the probe are shown in
Fig. 1.

To ascertain the relationship between the recognition per-
formance and the similarity threshold ts, we examined differ-
ent values of ts and evaluated the resulting performance in
terms of accuracy. The curve is shown as Fig. 2. Therefore,
we set the value of ts as 0.97, which has been proven to
also be suitable for other databases, and may be set as an
empirical value.

Fig. 1 Examples of images applied in experiment 1 from AR database. (a) Examples of the sample set.
(b) Examples of the probe set.
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For recognition rate, we compared the proposed CWS-
SRC method to the other three algorithms. Following the
experimental settings, we use 10 random splits of the data
for the experiment. The average and deviation results of
the algorithms are listed in Table 1. It has been shown that

the CWS-SRC achieves the highest recognition rate of up to
93.89%� 0.84 (ts ¼ 0.97), which is slightly higher than that
of MKD-SRC and much higher than those of the others.
Because no alignment has been performed between the
sample and the probe sets, the recognition rate of SRC is
considerably lower. Therefore, for occluded holistic face
recognition without the alignment process, the CWS-SRC
method can achieve a better performance.

4.2 Partial Face Recognition with Arbitrary Patch
The cropped Yale database consists of 165 frontal face
images of 15 subjects with an image size of 170 × 230.
We randomly selected two images per subject as samples
and the remaining as the probes. For each probe image,
one patch of random size h × w at a random position was
cropped as a partial face, where h and w were randomly
selected from (120,180) and (90,130), respectively. Thus,
there were 135 partial images (nine images per subject) in
the probe set and 30 images in the sample set (two images
per subject). Examples are shown in Fig. 3.

The threshold value of the similarity ts is still 0.97.
Because the original SRC algorithm is unsuited to partial or
scale variation scenarios, only three methods are compared in
this part. Following the experiment settings, we use 10 ran-
dom splits of the data for the experiment. The performance
of the remaining three methods is shown in Table 2. The

Fig. 2 The relationship between the recognition rate and the thresh-
old value of similarity.

Table 1 The results of holistic face recognition with occlusion
through the method of SIFT matching, sparse representation-based
classification (SRC), multikeypoint descriptors-SRC (MKD-SRC),
and clustering-weighted SIFT-based SRC (CWS-SRC).

SIFT
matching SRC MKD-SRC CWS-SRC

Recognition
rate (%)

53.47� 0.83 12.01� 1.04 88.82� 0.79 93.89� 0.84

Fig. 3 Examples of images applied in the second experiment from Yale database. (a) Examples of
the sample images. (b) examples of the probe images.

Table 2 The results of partial face recognition through the method of
SIFT matching, multikeypoint descriptors-SRC (MKD-SRC), and the
proposed clustering-weighted SIFT-based SRC (CWS-SRC).

SIFT matching MKD-SRC CWS-SRC

Recognition
rate (%)

65.93� 0.78 79.52� 0.92 85.93� 0.89
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proposed CWS-SRC method achieves the highest recogni-
tion rate of 85.93%� 0.89. The recognition rate for SIFT
matching and the MKD-SRC method are 65.93%� 0.78
and 79.52%� 0.92, respectively.

4.3 Car Model Image Recognition with
Different Scales and Pitch Angles

The car-model database is self-built and is captured using the
equipment shown in Fig. 4. By adjusting the photography
parameters, e.g., distance, pitch angle, illumination, we can
capture car images of different scales and postures. The
database consists of 10 vehicles (e.g., Touran, Tiguan, Polo,
Passat, etc.), which are shown in Fig. 5(a). Examples of the
sample and probe set are shown in Figs. 5(b) and 5(c), whose
photography parameters are listed in Table 3.

In this experiment, we took different quantities of the
samples to evaluate the performance of the CWS-SRC
method. The quantity of the sample set per subject was
increased from 20 to 60 with a step of 10, and the newly
added sample images were randomly selected. Simultane-
ously, the number of similar descriptors grew rapidly. The
experimental results are shown in Fig. 6 (where ts ¼ 0.97).
It is shown that the CWS-SRC and the MKD-SRC methods
are superior to the SIFT matching. With the quantity of sam-
ple images increasing, the result shows that the CWS-SRC
method is more suitable for a target recognition task when
many more samples are available.

The results of the three experiments demonstrate that the
weighted-voting classifier based on the similarity of features
has contributed to improving the recognition rate, and
the proposed CWS-SRC method can obtain a better perfor-
mance in alignment-free scenarios and also exhibits good

Fig. 4 The equipment for capturing the car-models.

Fig. 5 Self-captured car-model images. (a) 10 car-models. (b) sam-
ples of G.1 (sample images). (c) samples of G.2 (probe images).

Table 3 Photography parameters of the two groups of car-model images.

Distance (cm) Pitch angle (deg) Illumination (lx) Rotating angle (deg) Quantity Image size

G.1 680 0 22 3 120 624 × 312

G.2 800 7 17 3 120 584 × 280

Fig. 6 The recognition rate of CWS-SRC, MKD-SRC, and SIFT
matching with the increase of sample images.
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robustness for scale variation and affine transformation.
Comparing the experimental results, we find that the result
of the holistic face with an occlusion is the best, possibly due
to its relatively simple experimental condition. The result
shows that sufficient information is necessary to improve the
performance of the SRC-based method; therefore, it makes
sense to explore optimization based on the similarity of the
features.

5 Conclusions and Future Work
In this work, a novel framework for robust target recognition
with sufficient sample images is proposed, the CWS-SRC
method. With this method, each image is represented by a
set of SIFT descriptors. First, we obtain subsets by clustering
based on the similarity. Next, based on the subsets, we cal-
culate each atom’s weight, and a weighted-voting classifier is
created. Finally, each descriptor detected in a probe image
can be sparsely represented by the dictionary, and the iden-
tity of the probe image can be inferred via the classifier.

We evaluated the proposed approach on three conditions,
i.e., the holistic face with occlusion (AR database), the
partial face (Yale database), and the car-model with affine
transformation and scale variation. Compared to the SIFT
matching, the MKD-SRC and the original SRC methods,
the experimental results clearly and consistently indicate that
the proposed method is more robust with an increase in the
number of sample images for alignment-free image recogni-
tion. Meanwhile, there are still methods that may improve
the robustness, such as dictionary optimization, which will
be studied in the future.
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