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Abstract. Algorithms for image quality assessment (IQA) aim to predict the qualities of images in a manner that
agrees with subjective quality ratings. Over the last several decades, the major impetus in IQA research has
focused on improving predictive performance; very few studies have focused on analyzing and improving the
runtime performance of IQA algorithms. This paper is the first to examine IQA algorithms from the perspective of
their interaction with the underlying hardware and microarchitectural resources, and to perform a systematic
performance analysis using state-of-the-art tools and techniques from other computing disciplines. We imple-
mented four popular full-reference IQA algorithms (most apparent distortion, multiscale structural similarity,
visual information fidelity, and visual signal-to-noise ratio) and two no-reference algorithms (blind image integrity
notator using DCT statistics and blind/referenceless image spatial quality evaluator) in C++ based on the code
provided by their respective authors. We then conducted a hotspot analysis to identify sections of code that
were performance bottlenecks and performed microarchitectural analysis to identify the underlying causes
for these bottlenecks. Despite the fact that all six algorithms share common algorithmic operations (e.g., filter-
banks and statistical computations), our results revealed that different IQA algorithms overwhelm different
microarchitectural resources and give rise to different types of bottlenecks. Based on these results, we propose
microarchitectural-conscious coding techniques and custom hardware recommendations for performance
improvement. © 2014 SPIE and IS&T [DOI: 10.1117/1.JEI.23.1.013030]
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1 Introduction
Digital images are subject to various forms of processing as
they are captured, transmitted, and ultimately displayed to
consumers. Because such processing can change the image’s
appearance, it is critical to analyze the changes in order to
determine the impact on the image’s visual quality. To
this end, numerous algorithms for image quality assessment
(IQA) have been researched and developed over the last sev-
eral decades. IQA algorithms aim to provide an automated
means of gauging an image’s visual quality in a manner
that agrees with human judgments of quality. Today, IQA
research has emerged as an active subdiscipline of image
processing, and many of the resulting techniques and algo-
rithms have begun to benefit a wide variety of applications
ranging from image compression (e.g., Refs. 1 to 3), to
denoising (e.g., Ref. 4), to gauging intelligibility in sign lan-
guage video.5

Most IQA algorithms are so-called full-reference algo-
rithms, which take as input a reference image and a proc-
essed (usually distorted) image, and yield as output either
a scalar value denoting the overall visual quality or a spatial
map denoting the local quality of each image region. More
recently, researchers have begun to develop no-reference and
reduced-reference algorithms, which attempt to yield the
same quality estimates either by using only the processed/

distorted image (no-reference IQA) or by using the proc-
essed/distorted image and only partial information about
the reference image (reduced-reference IQA). See Refs. 6
to 9 for recent reviews.

All three types of IQA algorithms have been shown to
perform quite well at gauging quality. Some of the best-per-
forming full-reference algorithms, such as multiscale struc-
tural similarity (MS-SSIM),10 visual information fidelity
(VIF),11 and most apparent distortion (MAD),12 have been
shown to generate estimates of quality that correlate highly
with human ratings of quality, typically yielding Spearman
and Pearson correlation coefficients in excess of 0.9.
Research in no-reference and reduced-reference IQA is much
less mature; however, recent methods, such as DIIVINE,13

BLIINDS-II,14 and BRISQUE,15 can yield quality estimates
that also correlate highly with human ratings of quality,
sometimes yielding correlation coefficients that rival the full-
reference methods.

Although a great deal of research on IQA has focused
on improving prediction accuracy, much less research has
addressed performance issues with respect to algorithmic,
microarchitechtural efficiency, and program execution
speed. As IQA algorithms move from the research environ-
ment into more mainstream applications, issues surrounding
efficiency—such as execution speed and memory band-
width requirements—begin to emerge as equally important
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performance criteria. Many IQA algorithms that excel in
terms of prediction accuracy fall short in terms of efficiency,
often requiring relatively large memory footprints and run-
times on the order of seconds for even modest-sized images
(e.g., <1 megapixel). As these algorithms are adapted to
process frames of video (e.g., Refs. 16 and 17) or are
used during optimization procedures (e.g., during research
and develop optimization in a coding context), efficiency
becomes of even greater importance.

From a signal-processing viewpoint, it would seem that
the bulk of computation and runtime are likely to occur in
two key stages, which are employed by most IQA algo-
rithms: (1) local frequency-based decompositions of the
input image(s) and (2) local statistical computations on the
frequency coefficients. The first of these two stages can
potentially require a considerable amount of computation
and memory bandwidth, particularly when a large number
of frequency bands are analyzed and when the decomposi-
tion must be applied to the image as a whole. The latter of
these two stages would seem to require more computation,
particularly when multiple statistical computations are com-
puted for each local region of coefficients. For example, in
MS-SSIM10 an image is decomposed into different scales,
and local image statistics are computed for each block of
coefficients (via a sliding window). In VIF,11 wavelet sub-
band covariances can be computed via a block-based or
overlapping block-based approach. In MAD,12 variances,
skewness, and kurtosis of log-Gabor coefficients are also
computed for overlapping blocks in each subband. These
approaches have been argued to mimic the cortical process-
ing in the human visual system (HVS) in which the statistics
of local responses of neurons in primary visual cortex
(modeled as coefficients) are computed and compared in
higher-level visual areas. Yet, unlike the HVS, most modern
computing machines lack dedicated hardware for computing
the coefficients and their local statistics.

Due to their extensive use in image compression and com-
puter vision, a considerable amount of research has focused
on accelerating two-dimensional (2-D) image transforms,
which provide local frequency-based decompositions. For
example, the discrete cosine transform (DCT) has been
accelerated at the algorithm level by using variations of the
same techniques used in the fast Fourier transform (FFT)
(e.g., Ref. 18) and by exploiting various algebraic and struc-
tural properties of the transform, e.g., via recursion,19 lift-
ing,20 matrix factorization,21 cyclic convolution,22 and many
other techniques (see Ref. 23 for a review). Numerous tech-
niques for hardware-based acceleration of the DCT have also
been proposed using general-purpose computing on graphics
processing units (GPGPU)-based and field-programmable
gate array-based implementations (e.g., Refs. 24 to 27).
Algorithm- and hardware-based acceleration has also been
researched for the discrete wavelet transform (DWT) (e.g.,
Refs. 28 to 30) and Gabor transform (e.g., Refs. 31 to 34).

Techniques for accelerating the computation of local sta-
tistics in images has also been researched, though to a much
lesser extent than the transforms. One technique, called inte-
gral images, which was originally developed in the context
of computer graphics,35 has emerged as a popular approach
for computing block-based sums of any 2-D matrix of
values (e.g., a matrix of pixels or coefficients). The integral
image, also known as the summed area table, requires first

computing a table that has the same dimensions as the input
matrix, and in which each value in the table represents the
sum of all matrix values above and to the left of the current
position. Thereafter, the sum of values within any block of
the matrix can be rapidly computed via addition/subtraction
of three values in the table. A similar technique can be used
for computing higher-order moments, such as the variance,
skewness, and kurtosis (see, e.g., Refs. 36 and 37).

In Ref. 38, Chen and Bovik presented the fast SSIM and
fast MS-SSIM algorithms, which are accelerated versions of
SSIM and MS-SSIM, respectively. Three modifications were
used for fast SSIM: (1) The luminance component of each
block was computed by using an integral image. (2) The con-
trast and structure components of each block were computed
based on 2 × 2 Roberts gradient operators. (3) The Gaussian-
weighting window used in the contrast and structure com-
ponents was replaced with an integer approximation. For
fast MS-SSIM, a further algorithm-level modification of
skipping the contrast and structure computations at the finest
scale was proposed. By using these modifications, fast SSIM
and fast MS-SSIM were shown to be, respectively, 2.7× and
10× faster than their original counterparts on 768 × 432
frames from videos of the LIVE Video Quality database.39

Although algorithm-level modifications were used, the
authors demonstrated that these modifications had negligible
impact on predictive performance; testing on the LIVE
Image Quality and Video Quality databases revealed effec-
tively no impact on Spearman rank-order correlation coeffi-
cient, Pearson correlation coefficient, and root mean square
error. By further implementing the calculations of the con-
trast and structure components via Intel SSE2 [single instruc-
tion multiple data (SIMD)] instructions, speedups of ∼5×
for fast SSIM and 14× for fast MS-SSIM were reported.
In addition, speedups of ∼17× for fast SSIM and 50× for
fast MS-SSIM were reported by further employing paralle-
lization via a multithreaded implementation.

In Ref. 40, Okarma and Mazurek presented GPGPU tech-
niques for accelerating SSIM, MS-SSIM, and combined
video quality metric (CVQM) (a video quality assessment
algorithm developed previously by Okarma, which uses
SSIM, MS-SSIM, and VIF to estimate quality). To accelerate
the computation of both SSIM and MS-SSIM, the authors
described a compute unified device architecture (CUDA)-
based implementation in which separate GPU threads were
used for computing SSIM or MS-SSIM on strategically sized
fragments of the image. To overcome CUDA’s memory-
bandwidth limitations, the computed quality estimates for the
fragments were stored in GPU registers and transferred only
once to the system memory. Okarma and Mazurek reported
that their GPGPU-based implementations resulted in 150×
and 35× speedups of SSIM and MS-SSIM, respectively.

In Ref. 37, Phan et al. presented the results of a perfor-
mance analysis and techniques for accelerating the MAD
algorithm.12 Although MAD is among the best in predictive
performance, it is currently one of the slowest IQA algo-
rithms when tested on several modern computers (Intel
Core 2 and Xeon CPUs; see Ref. 37). A performance analy-
sis revealed that the main bottleneck in MAD stemmed from
its appearance-based stage, which accounted for 98% of
the total runtime. Within this appearance-based stage, the
computation of the local statistical differences accounted
for most of the runtime, and computation of the log-Gabor
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decomposition accounted for the bulk of the remainder. Phan
et al. proposed and tested four techniques of acceleration:
(1) using integral images for the local statistical computa-
tions; (2) using procedure expansion and strength reduction;
(3) using a GPGPU implementation of the log-Gabor decom-
position; and (4) precomputation and caching of the log-
Gabor filters. The first two of these modifications resulted
in an ∼17× speedup over the original MAD implementation.
The latter two resulted in an ∼47× speedup over the original
MAD implementation.

Although these studies have successfully yielded more
efficient versions of their respective algorithms, several
larger questions remain unanswered, specially with respect
to IQA algorithms: To what extent are the bottlenecks in
IQA algorithms attributable to the decomposition and statis-
tical computation stages versus more algorithm-specific
auxiliary computations? To what extent are the bottlenecks
attributable to computational complexity versus limitations
in memory bandwidth? Are there generic implementation
techniques or microarchitectural modifications that can be
used to accelerate all or at least several IQA algorithms?
The answers to these questions can provide important
insights for (1) designing new IQA algorithms, which are
likely to draw on multiple approaches used in several
existing IQA algorithms; (2) efficiently implementing multi-
ple IQA algorithms on a given hardware platform; (3) effi-
ciently applying multiple IQA algorithms to specific
applications; and (4) selecting and/or designing specific
hardware, which can efficiently execute multiple IQA algo-
rithms. In this paper, we present the results of a performance
analysis designed to examine, compare, and contrast the
performances of four popular full-reference IQA algorithms
(MS-SSIM10 published in 2003, VIF11 in 2006, visual signal-
to-noise ratio (VSNR)41 in 2007, and MAD12 in 2010)
and two no-reference IQA algorithms (BLIINDS-II14 and
BRISQUE15 in 2012).

This work draws upon techniques that are standard in the
field of performance analysis and software tuning. Listed
below are some similar studies done in the area of multime-
dia applications. We take a similar approach in this paper.

In Ref. 42, Bhargava et al. evaluated the effectiveness of
the ×86multimedia extension (MMX) instructions for digital
signal processing and multimedia applications using Intel’s
Vtune Amplifier XE profiler.43 Their analysis showed that
MMX assembly called within C programs is not an effective
strategy to improve performance. They recommend compre-
hensive hand-coding and restructuring of programs to fully
utilize MMX capabilities. They also conclude that parallel
processing using the SIMD extensions puts a higher burden
on the memory system. Their recommendations have guided
developers and compiler writers as well as computer archi-
tects over the years.

In Ref. 44, Gordon et al. analyzed the performance of
model-based video compression for a GPGPU implementa-
tion using CUDA and found that, surprisingly, the GPGPU
implementation was slower than the native CPU implemen-
tation. The authors analyzed data with the help of Intel’s
Vtune Amplifier XE performance analyzer to gain insight
into the specific reasons for the surprising results and found
a high cache miss rate and heavy stalling of the load/store
unit of the CPU in the GPGPU version. This led to the
discovery that the GPGPU implementation was using the

CPU’s load store units to access system memory instead
of using direct memory access.

In Ref. 45, Martinez et al. analyzed the performance of
commercial multimedia workloads on Intel’s Pentium 4,
focusing on whether these applications make use of the
4-wide out of order superscalar pipeline. They found that
the count for instruction per cycle (IPC) is very low, indicating
that these applications do not utilize the underlyingmicroarch-
itecture. They conclude that the low IPC was a result of branch
mispredictions and data cache misses, and they recommend
static code layout techniques that are aware of cache topology
to maximize the utilization of data caches.

Although our examination is limited to six algorithms, we
believe that this study is an important first step toward inves-
tigating broader performance-related issues in the design and
application of IQA algorithms. The findings and recommen-
dations presented in this paper apply broadly to all current-
generation Intel IA-32 and Intel 64 based general-purpose
computing platforms, whether laptops, servers, or desktops,
even though the actual hotspot and bottleneck details might
vary. Architectures that are radically different, with hardware
accelerators, dedicated image processing cores (such as those
found on some tablets and smart phones), and memory shared
between GPUs and CPUs (such as AMD’s Fusion APUs), are
expected to show very different execution characteristics.

This paper is organized as follows. Section 2 provides a
brief review of each of the six algorithms, including details of
the code implementations and the results of the performance
analysis for each algorithm. Sections 3 and 4 provide
the analysis methodology and some architectural concepts.
The performance analysis results are presented in Sec. 5.
Section 6 compares and discusses the differences in perfor-
mances of all six algorithms. General conclusions are pro-
vided in Sec. 7.

2 Algorithms
This section provides an introduction and a brief overview of
all six algorithms. For each algorithm, the Basic port of the
code to C++ subsection presents some techniques that we
used when porting the code to C++, for example, computing
FFT, calculating matrix’s eigenvalues, and code optimiza-
tions. The algorithms are ordered here in terms of year of
publication.

2.1 Multiscale Structural Similarity
The MS-SSIM was developed by Wang et al.10 in 2003. MS-
SSIM extends the original SSIM46 algorithm by applying
and combining SSIM for multiple scales, based on the argu-
ment that the correct scale depends on the viewing condi-
tions. The SSIM algorithm is derived from a hypothesis
that the HVS is highly adapted for extracting structural infor-
mation. Therefore, measure of structural similarity between
the reference and distorted images can be extended to esti-
mate visual quality. The hypothesis also states that one could
capture image quality with three aspects of information
loss: luminance distortion, contrast distortion, and structural
distortion.

2.1.1 Overview of the algorithm’s steps

A block diagram of the MS-SSIM algorithm is shown in
Fig. 1. The algorithm is implemented with five scales, in
which the reference and distorted images serve as the first
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scale. To obtain the other four scales, a low-pass filter, LPF1,
of size 2 × 2 pixels and a downsampling by a factor of two
are applied repeatedly. For each scale, a low-pass filter,
LPF2, of size 11 × 11 is applied to prevent artifacts from
the discontinuous truncation of the image. The luminance,
contrast, and structure are computed and compared to yield
a different map for each scale. This map is then combined
across scales and collapsed to obtain the MS-SSIM quality
index.

Specifically, the luminance comparison between two
scales is derived from the means of scales’ pixel values. The
contrast comparison is calculated from the variances, and the
structure comparison is computed from both the variances
and covariance of the two scales. The single-scale similarity
between the original and distorted scales is then calculated
from the product of these three comparisons.

Finally, the MS-SSIM index is combined from a weighted
geometric mean of contrast and structure comparisons of
all five scales and luminance comparison for the last scale.
These weights are used to adjust the relative importance of
different components.

2.1.2 Basic port of the code to C++

We implemented MS-SSIM in C++ by porting its
MATLAB® implementation, which is publicly available
from the authors of the algorithm. The input images are
loaded into one-dimensional (1-D) double arrays and are
accessed as 2-D matrices via a thin C++ wrapper class.41

The filter LPF2 was of size 11 × 11 in MATLAB® version;
in our C++ version, we convolve the image twice with two
length 11 1-D filters. By taking advantage of this separable
convolution, we reduced the number of multiplications for
one 512 × 512 image from 512 × 512 × 11 × 11 to 512×
512 × 11 × 2.

2.2 Visual Information Fidelity
The VIF was developed by Sheikh and Bovik11 in 2006.
Using natural scene statistic models, VIF quantifies the
loss of image information due to the distortion process by
considering the relationship among image information, the
amount of information shared between a reference and a dis-
torted image, and visual quality. Specifically, VIF quantifies
the information content of the reference image as being
the mutual information between the input and output of

a modeled HVS channel; this is the information that the
brain could ideally extract. Using a similar modeled HVS
channel, VIF measures information that the brain would
ideally extract from the distorted image. These two informa-
tion measures are then combined to form the VIF index that
correlates with the visual quality.

2.2.1 Overview of the algorithm’s steps

A block diagram of the VIF algorithm is shown in Fig. 2.
First, VIF filters the input images using the Steerable
Pyramid47 to model the image information in wavelet
domain. In this step, the Steerable Pyramid is employed
with four scales and six orientations, but only eight subbands
of interest are used later.

In the second step, the subbands of the reference image
are modeled using a Gaussian scale mixtures model. Each
subband is modeled as one random field (RF), which is a
product of two independent RFs. The first RF is a positive
scalar, and the second RF is a Gaussian vector with zero-
mean and a covariance matrix. For the distorted image, the
same idea is applied: signal attenuation by a deterministic
scalar gain field, and a stationary additive zero-mean
Gaussian noise RF in the same wavelet domain.

In the next step, in order to calculate the reference and
distorted image information, VIF also models HVS noises
for two channels as two stationary RFs with zero-means
and same covariance, which are uncorrelated multivariate
Gaussians with the same dimensionality as the reference
image. The image information for each subband is calculated
with this noise.

Finally, the image information is summed over eight sub-
bands, and the VIF index is given by the ratio between the
distorted image information and reference image information.

2.2.2 Basic port of the code to C++

We implemented a C++ version of the VIF algorithm by
porting the code from its MATLAB® implementation, which
is publicly available from the authors of VIF at Ref. 48. The
input images are loaded into 1-D double arrays and are
accessed as 2-D matrices via a thin C++ wrapper class.41 The
original VIF algorithm uses the Steerable Pyramid toolbox47

in MATLAB®; when ported to C++, we used the Steerable
Pyramid C library by the same author. Originally, the
Steerable Pyramid library with six orientations and four

Fig. 1 Diagram of the multiscale structural similarity (MS-SSIM) algorithm. LPF1 is a low-pass filter of
size 2 × 2. ↓ 2 is a downsampling by a factor of two. LPF2 is a low-pass filter of size 11 × 11. The refer-
ence and distorted images serve as the first scale. The other four scales are obtained by applying LPF1
and ↓ 2 repeatedly. For each scale, the similarity between two images is measured by applying LPF2 to
prevent artifacts. Finally, the MS-SSIM index is formed via a combination of the luminance, contrast, and
structure comparisons from different scales.
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scales applied the filter 24 times. The VIF algorithm, how-
ever, needs only eight subbands; therefore, we modified the
library to generate only these eight subbands. This modifi-
cation reduced the number calls to the filtering function from
24 to 8. To calculate the eigenvalues of covariance matrix, we
employed the Newmat C++ matrix library.49

2.3 Visual Signal-to-Noise Ratio
The VSNR was developed by Chandler and Hemami41 in
2007. VSNR estimates the visual perception of distortions
in natural images based on the root-mean-squared (RMS)
contrast by computing the contrast thresholds for detection
of distortions, the perceived contrast of the distortions, and
the degree to which the distortions disrupt global precedence
and, thereby, degrade the image’s structure.

2.3.1 Overview of the algorithm’s steps

A block diagram of the VSNR algorithm is shown in Fig. 3.
VSNR is computed via three main steps: a DWT (via filter-
ing with the 9/7 DWT filters), a statistical calculation to com-
pute the perceived contrast, and a final computation for the
disruption of global precedence.

In the first step, the reference image is filtered via a five-
level 2-D DWT to generate 16 subbands. An error image,
obtained by subtracting the two input images, is also passed
through a 2-D DWT transform with the same number of lev-
els. VSNR takes into account the viewing conditions by
transforming images into luminance domain via a black-
level offset, the pixel-value-to-voltage scaling factor, and a
power to the gamma of the display monitor. A set of spatial

frequencies, f ¼ ½f1; f2; : : : ; f5�, is used to describe the
radial frequency content of visual stimuli expressed in
units of cycles per degree of visual angle (cycles/deg),
given by fm ¼ 2−mrv tanðπ∕180Þ with m ¼ 1; 2; : : : ; 5; r
and v denote the resolution of the display and the viewing
distance, respectively. This vector of spatial frequencies is
also computed in this first step.

In the next step, the two sets of DWT subbands and the
vector of spatial frequencies are employed to assess the
detectability of the distortions. The perceived contrast of
each image is computed and the contrast thresholds are
calculated within each band centered at fm to determine
whether the distortions in the distorted image are visible.
The contrasts at each level are calculated from the standard
deviations of the three oriented subbands (LH, HL, and HH).

At this point, if the distortions are below the threshold of
visual detection for all subbands, the distortions are not vis-
ible, and therefore, the distorted image is deemed to be of
perfect visual quality. If the distortions are suprathreshold,
the last step is performed. In this last step, the visual distor-
tion is calculated from a weighted geometric mean of total
RMS distortion contrast and a measure of the disruption of
global precedence. Finally, the VSNR quality estimate is
given as the log of the ratio of the RMS contrast of the refer-
ence image and the visual distortion.

2.3.2 Basic port of the code to C++

The original C++ code of VSNR was obtained from the
author’s website.41 The reference image and distorted
image are loaded into a 1-D fload array, and it is accessed
as 2-D matrix via a thin C++ wrapper class.41 The five-level
2-D DWT decomposition step is implemented based on the
lifting scheme (fast DWT50) using the default Cohen-
Daubechies-Feauveau 9/7 wavelet. In the statistical compu-
tation step, in order to obtain the image perceived contrasts,
we need to calculate the average luminance of the image,
which requires calling power, multiplication, and addition
operations for all pixels. We modified this part by using
a look-up table technique to obtain a faster implementation
that uses those operations only 256 times.

2.4 Most Apparent Distortion
The MAD algorithm was developed by Larson and
Chandler12 in 2010. MAD uses two strategies to estimate
image quality. First, a detection-based strategy is used for

Fig. 2 The block diagram of our implementation of visual information fidelity (VIF) algorithm. First, two
input images are filtered via a six-orientation and four-level Steerable Pyramid, which is modified to yield
eight subbands for faster computation. The parameters of reference and distorted channels are calcu-
lated from the filtered images. Finally, the information of reference and distorted images are calculated
and collapsed into a VIF index.

Fig. 3 The diagram of visual signal-to-noise ratio (VSNR) algorithm.
First two input images are subtracted to generate an error image. The
reference and error images are then filtered via a five-scale two-
dimensional (2-D) discrete wavelet transform. Each set of filtered sub-
bands is employed to calculate the perceived contrast. Finally, the
VSNR is obtained by computing the disruption of global precedence.
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near-threshold distortions. In this case, the image is most ap-
parent, and thus, the HVS attempts to look past the image
and look for the distortions. Second, an appearance-based
strategy is used for clearly visible distortions. In this case,
the distortions are most apparent, and thus, the HVS attempts
to look past the distortion and look for the image’s subject
matter.

2.4.1 Overview of the algorithm’s steps

A block diagram of the MAD algorithm is shown in Fig. 4.
From the input images, the MAD index is computed via two
main stages: the detection-based stage and appearance-based
stage. Each stage consists of two basic steps: filtering and
statistical computations. These two stages yield two quan-
tities indicating the quality of each stage: a detection-
based index and an appearance-based index. These two
indices are then combined to obtain the overall quality of
the distorted image.

In the detection-based stage, a model of local visual
masking, which takes into account the contrast sensitivity
function (CSF), and luminance and contrast masking, is
employed. The two input images are first passed through
a contrast sensitivity function filter51 in the frequency
domain using FFT and inverse FFT. Two local contrast
maps of the two filtered images are computed in an overlap-
ping block-based fashion with blocks of size 16 × 16 and a
12-pixel overlap between neighboring blocks. From these
two local contrast maps, the visible distortion map is calcu-
lated locally for the regions that are deemed to be visibly
distorted. This map is then collapsed via mean squared
error (MSE) measure to obtain a detection-based index.

In the appearance-based stage, the appearance-based dif-
ference map is computed from the difference of low-level
statistics (mean, variance, skewness, and kurtosis) for all
local blocks of the log-Gabor filtered images (subbands).
First, the input images are filtered via a log-Gabor filter
bank with five scales and four orientations to obtain 20 sub-
bands. The steps to compute those subbands include comput-
ing the image’s FFT, a product of this image’s FFTwith a set
of 2-D frequency responses, and an inverse FFT. Each pair of
two sets of 20 reference and distorted subbands is then di-
vided into small blocks, each of size 16 × 16 (and 12 pixels
of overlap between neighboring blocks). The standard

deviation, skewness, and kurtosis of each block is calculated
and compared to generate the statistical difference maps for
each scale/orientation. The 20 statistical difference maps are
then combined via a weighted mean across scales and col-
lapsed via a 2-norm to obtain the appearance-based index.

Finally, the overall quality of the distorted image is com-
puted by taking a weighted geometric mean of the detection-
based index and the appearance-based index, where the
weight is chosen based on the detection-based index.

2.4.2 Basic port of the code to C++

We implemented a C++ version of the MAD code by porting
from its MATLAB® version, which is publicly available to
download from the authors of MAD at Ref. 52. The input
images are loaded into 1-D double arrays and are accessed
as 2-D matrices via a thin C++ wrapper class.41 In the detec-
tion-based stage, the images are transformed to the lumi-
nance domain by using a look-up table. The Ooura FFT
library53 is employed for calculating FFT and inverse FFT.
This Ooura library is also used in the log-Gabor decompo-
sition in the appearance-based stage. The log-Gabor filter
was implemented based on Kovesi’s work.54 The statistical
difference maps are calculated using integral images for
higher orders; details of these modifications can be found
in Ref. 37.

2.5 Blind Image Integrity Notator using DCT
Statistics

The BLIINDS-II algorithm14 was developed by Saad et al.14

in 2012. BLIINDS-II is a no-reference IQA algorithm using
DCT statistics. It inherits the idea from the BLIINDS-I algo-
rithm55 that the data histograms of specific-domain-trans-
formed natural images share the same shape. One such
domain is local DCT, which utilizes the generalized natural
scene statistic based model. The model’s parameters are
transformed into features, and the generalized probabilistic
model is then applied to these features to predict the visual
quality of the input distorted image. The BLIINDS-II algo-
rithm is trained using features derived directly from a gen-
eralized parametric statistical model of natural image DCT
coefficients against various perceptual levels of image
distortion.

2.5.1 Overview of the algorithm’s steps

A block diagram of the BLIINDS-II algorithm is shown in
Fig. 5. The algorithm is a multiscale algorithm, similar to the
MS-SSIM algorithm. The input image, considered as the first
scale, is low-pass filtered and downsampled twice to obtain
two more scales. Each scale is then passed through the same
procedure: first a block-based DCT, a generalized Gaussian
modeling, and then extraction of features. Finally, all features
from the three scales are combined to create a BLIINDS
index indicating the quality of the distorted image.

In the first stage of the algorithm, all three scales of the
input image are divided into small blocks of size 5 × 5 with
two pixels of overlap between neighboring blocks. Each
block is then subjected to a 2-D DCT.

In the second stage, a generalized Gaussian model is
applied to each block of 25 DCT coefficients, as well as
for specific partitions within each block. Here, the DCT
histogram is fitted with a multivariate Gaussian model to
extract parameters via a line search procedure.

Fig. 4 The diagram of most apparent distortion (MAD) algorithm. For
detection-based stage, reference and distorted images are first fil-
tered using a contrast sensitivity function. The distortion map is
then computed from filtered images and collapsed via a MSE mea-
sure to obtain a detection-based index. For the appearance-based
stage, both images first are filtered using log-Gabor with five scales
and four orientations. The statistical difference map is computed from
the 20 filtered subbands and then collapsed into an appearance-
based index. Finally, the MAD index is given by taking a weighted
geometric mean of the appearance-based index and detection-
based index.
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Next, in the feature-extraction stage, eight features are
derived from the model parameters of all blocks. All param-
eters are pooled in two ways: first, a percentile pooling that
takes the average of the lowest (or highest) 10th percentile,
and second, the ordinary sample mean, which is the average
of the 100th percentile. Taking both the averages of 10th and
100th percentiles allows the algorithm to determine if the
distortions are uniform over space.

The final step employs a probabilistic modeling, where
the BLIINDS index (the score for the image quality) is com-
puted by using a simple Bayesian model from a trained
parameters set. This model is applied to the 24 features
extracted from three scales.

2.5.2 Basic port of the code to C++

The MATLAB® code was obtained from the first author of
BLIINDS-II via email in early 2012, and it has been con-
firmed to be the latest version available. We ported this
MATLAB® code to C++. As shown in Fig. 5, the distorted
image is loaded into a 1-D double array, and it is accessed as
2-D matrix via a thin C++ wrapper class.41 The low-pass fil-
ter step was optimized by using a separable convolution; we
convolve the image with two 1-D kernels separately, each of
size 3 × 1. The 2-D DCT for blocks of size 5 × 5 was also
optimized by using a look-up table for 25 values of the
cosine function. In the generalized Gaussian modeling step,
some functions are called repeatedly for each small block.
In our C++ code, these functions are precalculated out of
the main loop. This step includes a fitting process of the
DCT data histogram to the model as a line search procedure
over 9970 values in the range of [0–10]. In the feature-extrac-
tion step, the algorithm needs to sort values to determine 10th
and 100th percentiles. This sorting procedure is performed
via a quick sort algorithm.

2.6 Blind/Referenceless Image Spatial Quality
Evaluator

The BRISQUE algorithm15 was developed by Mittal et al. in
2012. In contrast to BLIINDS-II, which operates in the DCT
domain, BRISQUE claims that in the spatial domain, natural

images share the same properties. The mean subtracted con-
trast normalized (MSCN) coefficients of the image and the
pairwise products of neighboring MSCN coefficients have
the histograms of Gaussian-like appearances. These histo-
grams distribute vary as a function of distortion. The histo-
grams of natural images have the bell shape, while the
histograms of distorted images could be of any shape, e.g.,
Laplacian distributions for blurred images and unusual tails
for white-noise images. The generalized Gaussian distribu-
tion (GGD) and asymmetric generalized Gaussian distribu-
tion (AGGD) models are used for quantifying the features
from shape, variance, left variance, and right variance of
a histogram. From these features, the final quality score is
given via a trained mapping by using a support vector
machine (SVM) regressor.

2.6.1 Overview of the algorithm’s steps

A block diagram of the BRISQUE algorithm is shown in
Fig. 6. Similar to previous approaches, this algorithm utilizes
two scales by first downsampling the input image to obtain
the second scale. The following three stages are then applied.

In the first stage, the locally normalized luminances are
computed via local mean subtraction and divisive normali-
zation. This step mainly contains a filtering process of the
image and its divisive normalization by a size 7 × 7 2-D cir-
cularly symmetric weighted Gaussian filter. The statistical
relationships between neighboring pixels are also modeled
in this stage. Specifically, four orientations, horizontal (H),
vertical (V), main-diagonal (D1), and secondary-diagonal
(D2) of MSCN coefficients are computed and multiplied
point-by-point with the MSCN coefficients.

In the second stage, the GGD model is applied to calcu-
late the shape and variance (feature 1 and feature 2 for first
scale, feature 19 and 20 for second scale) from histograms of
MSCN coefficients. The AGGD model is employed to cal-
culate the shape, mean, left variance, and right variance from
histograms of each of the four pairwise products (each scale
has 16 features, four features for four products).

In the final stage, all 36 features (two scales, each scale
has two features for GGD fitting and four features for AGGD
fitting of each orientation) are collapsed into one index for

Fig. 5 BLIINDS-II algorithm. LPF is a low-pass filter of size 3 × 3. ↓ 2
is a downsampling by a factor of two. The input image serves as the
first scale. Two more scales are obtained by the low-pass filter and
downsampling. Each of three scales is divided into blocks of size 5 ×
5 so that the discrete cosine transform (DCT) can be applied for each
block. The transformed coefficients are then modeled using general-
ized Gaussian to extract features. Finally, a probabilistic modeling is
applied to yield the BLIINDS index.

Fig. 6 BRISQUE algorithm. LPF is a low-pass filter and ↓ 2 is a down-
sampling by a factor of two; they are utilized to obtain a smaller scale
of the input image, which serves as the first scale. Each of two scales
is employed to compute locally normalized luminance via local mean
subtraction and divisive normalization. The luminances and their pair-
wise products of neighboring mean subtracted contrast normalized
(MSCN) coefficients along four orientations (H, V, D1, and D2) are
fitted with generalized Gaussian distribution (GGD) and asymmetric
GGD (AGGD) models to extract 36 features. Finally, the support vec-
tor machine regressor is applied to yield the BRISQUE quality index.
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the score of image quality via a regression module. Here, the
BRISQUE algorithm is trained to use the SVM regressor to
map the 36 features to a quality score.

2.6.2 Basic port of the code to C++

We implemented a C++ version of the BRISQUE code by
porting from its MATLAB® version, which is publicly avail-
able from the authors’ website.39 The input image is loaded
into 1-D double array and is accessed as a 2-D matrix via
a thin C++ wrapper class.41 In the first stage, the Gaussian
filter was optimized by using a separable convolution; we
convolve the image with two 1-D kernels separately, each
of size 7 × 1. In the second stage, the GGD fitting and
AGGD fitting functions contain a fitting process of data his-
tograms to the model as a line search procedure over 9801
gamma values. In our program, the gamma values were pre-
calculated and stored for faster speed. In the last stage, the
SVM regression module, we used the same LIBSVM execut-
able56 as in the MATLAB® version.

3 Analysis Methodology

3.1 Algorithms and Profiler
We define an experimental framework for performance
analysis designed to examine, compare, and contrast the per-
formances of the six algorithms on a typical general-purpose
computing platform. To provide a common codebase, we
implemented five algorithms in C++ based on the original
MATLAB® code provided by the authors. The C++ imple-
mentation for VSNR was directly available from its author
and further optimized as described in Sec. 2.3.2. An initial
code-level profiling was performed in both MATLAB® and
Intel’s Vtune Amplifier XE43 to identify and correct obvious
inefficiencies in the baseline implementations. For perfor-
mance profiling, we first used Intel’s Vtune Amplifier XE
to identify segments of the program where most of the
execution time was spent. Such sections of the program
are called hotspots, and they should be targeted for improv-
ing the computation performance. After the top hotspot

functions were identified, we conducted a microarchitectural
analysis to observe the interactions between the hotspot
functions and the processor and other microarchitectural sub-
systems. Our specific goal was to find architectural bottle-
necks and map them to specific execution blocks of the
respective algorithm.

3.2 Sample Images
To get the results shown in this paper, we executed 30 trials
of each of the six algorithms on a set of 42 images. These
images were taken from the CSIQ database,12 including
seven different original images (I1 to I7), each with three
different distortion types, additive Gaussian white noise
(AWGN), Gaussian blurring, and JPEG compression, with
two levels of distortion each, level 1 for low-distorted images
(AWGN1, BLUR1, and JPEG1) and level 5 for highly dis-
torted images (AWGN5, BLUR5, and JPEG5). The original
images span a variety of commonplace subject matters in five
categories, animals, landscapes, people, plants, and urban.
They are shown in Fig. 7. Nine of the highly distorted ver-
sions (AWGN5, BLUR5, and JPEG5) of I2, I3, and I7 are
shown in Fig. 8. A summary of the experiment images is
provided in Table 1.

3.3 Analysis Platform
For this study, we use the second-generation Intel Core i5-
2430M processor clocked at 2.4 GHz and a system memory
(RAM) of 4 GB. The microarchitecture was Sandy Bridge.
Further details about the caches and memory hierarchy are
provided in Table 2.

4 Architectural Concepts
This section provides a brief explanation of the architectural
concepts, which apply to our results presented in Sec. 5.

4.1 Virtual Memory
Virtual memory is an abstraction provided by operating sys-
tems to the programmer, so that the programmers do not need

Fig. 7 Seven original images span a variety of commonplace subject matters in five categories: animals,
landscapes, people, plants, and urban.
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to worry about size constraints and the layout of blocks in the
actual physical system memory. Without virtual addressing,
the programmer would have to explicitly manage physical
memory resources shared among multiple programs and
multiple users. For example, a program would have to
explicitly load and unload sections of the code that corre-
spond to different phases of the program execution because
loading the entire program and the corresponding working
data set would overwhelm the physical memory, and con-
sequently, other concurrent programs would starve for
memory. Thus, all addresses generated by the program are
virtual addresses spanning the entire 32-bit or 64-bit address
space and need to be translated to the actual physical loca-
tions held by the data. A mapping table called the page table
handles this process. Pages are typically 4 KB in size, and
they facilitate the virtual to physical mapping of addresses

because a single entry in the mapping is required for all
the addresses in the 4 KB range instead of individual map-
pings for each address. The page table is stored in the main
system memory, which takes hundreds of clock cycles to
access. To be able to translate faster so as to be more com-
patible with the speed of the processor, a cache (faster and
smaller memory) is used to store those translations that are
currently in use. This cache is called the translation look-
aside buffer (TLB), and there is usually a separate TLB
for the program instructions (ITLB) and data (DTLB).

Fig. 8 Some distorted versions (AWGN5, BLUR5, and JPEG5) of I2, I3, and I7. Original images are
shown in Fig. 7.

Table 1 A summary of the experiment images.

Number of images varying
in content

7

Types of distortions Additive Gaussian white noise,
blurring, JPEG compression

Levels of distortions 2 (level 1, level 5)

Total subject images 42

Image size 512 × 512

Table 2 Processor and system hardware specifications for the
experiment.

Processor Intel core i5-2430M

Frequency 2.4 GHz

Microarchitecture Sandy Bridge

System memory (RAM) 4 GB

L1 instruction cache 32 KB per core

L1 data cache 32 KB per core

L2 cache (unified instruction and data) 256 KB per core

L3 cache (unified instruction and data) 3 MB shared
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As the TLB stores only a subset of the page table, there are
times when the mapping is not found in the TLB. This is
called a TLB miss. On a TLB miss, the page table entry
has to be brought into the TLB from the main memory.
This transfer can take hundreds of clock cycles, and thus,
frequent TLB misses can lead to a performance loss.

4.2 CPU Caches
The main system memory (RAM) is fairly slow and takes
hundreds of clock cycles to deliver operands to the processor.
Therefore, to deliver operands to the processor every clock
cycle, a fast and small cache memory is placed between the
processor and system memory. The cache memory closest to
the processor is the level-1 (L1) cache; it is the fastest and
smallest cache in the hierarchy. Usually, the L1 is split into
an instruction cache (I-cache) to store the program’s instruc-
tions and the data cache (D-cache) for the operands. The next
level of the cache memory is bigger and slower, and is called
the level-2 (L2) cache. The level-3 (L3) cache is the last-level
cache (LLC) in the hardware architecture for our analysis
platform. More details about cache memories and memory
hierarchy can be found in Ref. 57.

4.3 Address Calculation
The load effective address (LEA) instruction is an assembly
instruction that calculates the effective address of memory
operand and places it in a CPU register. Modern superscalar
processors have multiple dispatch ports to dispactch instruc-
tions to execution units. LEA instructions with two operands
can be dispatched through port 1 and port 5 on the Intel
Sandy Bridge microarchitecture. LEA instructions with
three operands have a longer latency of three clock cycles
and can only be dispatched through port 1. Thus, a large
number of back-to-back three operan LEA instruction will
cause a performance bottleneck. There are some other spe-
cial situations in which the LEA instructions can take three
clock cycles to execute even with two operands. Details
about these cases can be found in Ref. 58.

4.4 Speculative Loads
Modern processors internally execute instructions out of the
correct program, in order to use the hardware more effi-
ciently, and then commit or retire the instructions in the cor-
rect program order. In this process, instructions that load data

from the main memory to the CPU are often given a higher
priority because the data that they load are to be used in sub-
sequent instructions. The speculative load has to be com-
pared with any pending instructions that might be storing
data in the same address. Because this operation could
require several comparisons, instead of comparing the entire
32-bit or 64-bit address, typically, only the last 12 bits are
compared. If these addresses are 4 KB or multiple of
4096 bytes apart, a false hazard is detected. This is called
4K aliasing,58 and the speculative load has to be reissued
in its correct program order. This reduces the throughput of
instructions and creates a performance slowdown. These
false positives from 12-bit comparisons can also cause
machine clears.

5 Results
In this section, we provide results of the microarchitectural
analysis for each of the six algorithms. The algorithms’
results are presented here in terms of alphabetical order
for full-reference algorithms, followed by BLIINDS-II and
BRISQUE.

5.1 Performance Analysis of MAD
To perform hotspot analysis, the MAD algorithm was
applied for 30 iterations for each image. The results of
the hotspot analysis are provided in Table 3. These results
show that the average execution time for all 42 images
for MAD is ∼41.97 s. The average execution time for top
hotspot functions/blocks is provided in second column
with the standard deviation. The hotspot functions are listed
in descending order, with the function consuming the highest
execution time listed first. The table shows the average
execution time for individual functions calculated across
the 42 images. We also plot the individual execution time
for all 42 images in Fig. 9.

As shown in Table 3, the top hotspot functions contribute
∼48.62% of the total execution time, and the other functions
add up to the remaining 52.38%. MAD has minimal varia-
tion of total execution time across different image content as
well as different distortion types. Thus, any optimizations for
MAD can be made without any specific consideration of
image content or distortion.

Also shown in Table 3 are hardware bottlenecks (for
each hotspot function) identified via the microarchitectural

Table 3 Analysis results of most apparent distortion. Average execution time for top hotspots functions/blocks of 42 images is presented with
the standard deviation. The total execution for each hotspot is calculated from the average. The hardware bottlenecks are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks

Gabor convolution 10.19� 0.31 24.29 Data translation lookaside buffer (DTLB) overhead

Appearance-based statistical difference
map computation

4.06� 0.25 9.67 DTLB overhead

Detection-based visible distortion
map computation

2.83� 0.10 7.13 Last-level cache (LLC) misses

Fast Fourier transform 2.91� 0.19 6.52 L1D replacement, L2D replacement, LLC misses

Other 21.98� 0.44 52.38 N/A

All 41.97� 0.48 100 N/A
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analysis. The following subsections describe details of the
observed results for each of the hotspot functions and include
explanations of underlying computer architecture concepts
whenever necessary.

5.1.1 Gabor convolution

The Gabor convolution function is used to decompose input
images with five scales and four orientations to yield a set of
20 subbands. This function is called by the log-Gabor filter-
ing block [as shown in Fig. 10(c)]. This block includes three
main functions: FFT, Gabor convolution, and inverse FFT.
The function takes ∼10.19 s, which is 24.29% of the total
execution time.

By investigating the microarchitectural resources utilized
by the Gabor convolution function, we find that the perfor-
mance bottleneck is in the memory subsystem, specifically
with DTLB overheads. The results show that the Gabor con-
volution function has a high DTLB overhead. The function
generates a set of 40 filtered images (subbands), which is
40 × 512 × 512 × 8 bytes (80 MB). With a typical page

size of 4 KB, this set spans over 20 thousand pages, with
each page requiring its own entry in the TLB for translation.
The hardware architecture of our analysis platform has 64
entries in the level-1 DTLB and 512 entries in the level-2
DTLB. Thus, the 20,000 translations required for the 40 sub-
bands cause a large number of misses, each of which takes
hundreds of clock cycles to service. One technique to over-
come the problem of TLB overhead is to use superpages.
Details on using superpages along with other techniques
to reduce penalties due to TLB overhead are discussed in
Sec. 5.

5.1.2 Appearance-based statistical difference map
computation

The appearance-based statistical difference map computation
(ASDMC) function calculates the statistical difference map
using variance, skewness, and kurtosis of the subbands. This
function takes two sets of 20 subbands as the inputs. For each
pair of subbands of the same scale and orientation, it calcu-
lates the local standard deviation, skewness, and kurtosis

Fig. 9 The execution time of MAD for each pair of reference and distorted images. The contributions of
hotspot functions are stacked together to form the total execution time.

Fig. 10 Mapping between hotspots/hardware bottlenecks and the algorithmic blocks for MAD. (b) The
detail of contrast sensitivity function block. (c) The detail of log-Gabor filtering block. Log-Gabor block
suffers from L1D and L2D replacements, last-level cache (LLC) misses, and data translation lookaside
buffer (DTLB) overhead. Fast Fourier transform (FFT) and inverse FFT blocks suffer from L1D and L2D
replacement, and LLC misses; the appearance-based statistical difference map computation and
detection-based visible distortion map computation functions are a part of statistical computation
block, which suffer from DTLB overhead and LLC misses.
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difference maps. The combined statistical difference map is
then collapsed into an appearance-based index. This function
takes 4.06 s, which is 9.67% of the total execution time.

The ASDMC function, similar to the Gabor convolution
function, suffers from bottlenecks in the memory subsystem
and faces penalties due to DTLB overhead. As with the
Gabor convolution, the performance penalty is also due to
the traversal of a large memory space, as the algorithm cal-
culates statistics (standard deviation, skewness, and kurtosis)
for all the 40 subbands.

5.1.3 Detection-based visible distortion map
computation

The detection-based visible distortion map computation
(DVDMC) function calculates the detection-based map
and then collapses it into a detection-based index. The detec-
tion-based map is calculated by finding the luminance of the
reference and the distorted image, calculating the luminance
error image, and then applying a contrast sensitivity function
via the FFT to the reference and the error image. The func-
tion takes 2.83 s, which is 7.13% of the total execution time.

The DVDMC function suffers from LLC misses, which
face a high performance penalty because they are serviced
from the main memory. DVDMC processes input images,
luminance images, and matrices in the Fourier domain.
This huge data set cannot fit in the caches, and consequently,
the function suffers from a large number of LLC misses. The
data have to be fetched from the main memory, which causes
a slowdown.

5.1.4 Fast Fourier transform

The FFT function converts the reference and distorted
images into the Fourier domain. The FFT function takes
2.91 s, which is 6.52% of the total execution time.

From the microarchitectural analysis, we find that there
are misses at the levels of cache, which requires that we
investigate the working data set for the FFT function. The
output of the FFT operation is a 512 × 512 complex matrix,
including both real and imaginary parts. This matrix uses the
data type double to represent floating-point numbers, and
hence, each pixel is 8 bytes. The total data set for the function
is 2 × 512 × 512 × 8 bytes (4 MB). As the total data set is
larger than data caches’ sizes, data need to be fetched
from the main memory, causing performance degradation.

Whether caches are used effectively depends on spatial
and temporal locality. Spatial locality involves accessing
memory addresses that are close to each other, and temporal
locality involves repeated accesses to the same data. A higher
number of misses for L1D and L2D caches suggests that the
access pattern lacks locality of reference. Techniques such as
cache blocking or loop tiling can be used to improve locality
of reference, thereby improving performance by reducing
misses. A further discussion of cache blocking and other
techniques to improve cache performance are discussed in
Sec. 6.1.

5.1.5 Mapping algorithmic blocks to hotspots/hard-
ware bottlenecks

Figure 10 shows the mapping between hotspots/hardware
bottlenecks and the algorithmic blocks of MAD algorithm.
The log-Gabor filtering block includes three main blocks:
FFT (fast Fourier transform function), five-scale and four-
orientation decomposition (Gabor convolution function),
and IFFT (inverse FFT function) blocks. This block con-
sumes ∼71% of the execution time. It suffers from L1D
and L2D replacements, LLC hits, and DTLB overhead.
The CSF block endures L1D and L2D replacements, and
LLC hits, and consumes ∼7.5% of the execution time.
The compute visible distortion map block (including
DVDMC function as its main function) faces the LLC misses
and consumes ∼10.5% of the execution time. The compute
statistical difference map block consumes ∼11% and expe-
riences DTLB overhead and LLC misses.

5.2 Performance Analysis of MS-SSIM
To perform hotspot analysis, the MS-SSIM algorithm was
applied for 30 iterations for each image. The results of hot-
spot analysis are provided in Table 4. These results show that
the average execution time for all 42 images is ∼2.51 s. The
algorithm spends ∼56.95% of the total time in the top hot-
spot function and ∼74.15 or 80.73% of the total time in the
top two or three hotspot functions, while the remaining func-
tions require only 19.27% of the execution time.

We also plot the individual execution time for all 42
images in Fig. 11. The figure shows that MS-SSIM has min-
imal variation of total execution time across different image
content as well as different distortion types. Thus, similar to
MAD, optimizations can be made without specific consider-
ation of the image content or distortion.

Table 4 Analysis results of multiscale structural similarity. Average execution time for top hotspot functions/blocks of 42 images is presented with
the standard deviation. The total execution for each hotspot is calculated from the average. The hardware bottlenecks are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks

Low-pass filter 11 1.43� 0.10 56.95 L1D, L2D replacement

Similarity measures 0.43� 0.06 17.20 L1D, L2D replacement, LLC miss. Assists

LCS average 0.17� 0.03 6.58 L2D replacement, LLC miss, DTLB overhead.
Floating-point divide

Other 0.48� 0.09 19.27 N/A

All 2.51� 0.03 100 N/A
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Also shown in Table 4 are hardware bottlenecks (for each
hotspot function) identified via the microarchitechtural
analysis. The following subsections describe details of the
observed results for each of the hotspot functions and include
explanations of underlying architectural concepts whenever
necessary.

5.2.1 Low-pass filter 11

The low-pass filter 11 function is an implementation of an
11 × 11 Gaussian low-pass filter over the reference image,
the distorted image, and their five different scaled versions.
The average execution time is ∼1.43 s, which is 56.95% of
the total execution time.

The results show that the associated hardware bottlenecks
are in the memory subsystem because of the penalties due to
L1D and L2D replacements, similar to the functions in
MAD. The filter is initially applied over both the reference
and distorted images, and then the filtered images are down-
sampled to calculate the next scale, after which these down-
sampled images are again filtered. This process is repeated to
achieve total five different scales. We can infer that the filter
function demonstrates the temporal locality: the filtered
image is used to further downsample the images and filter
them again. Thus, once the block of data is brought into
the cache, it is accessed repeatedly before it is evicted.
Although the function has temporal locality, there are
replacements in L1D and L2D cache due to the large work-
ing data set, which is ∼4 × 512 × 512 × 8 bytes (8 MB).
This large working data set leads to cache replacements,
which cause a performance penalty and, thus, higher execu-
tion time.

5.2.2 Similarity measures

The similarity measures function calculates the SSIM index
for all five scales by using the luminance, contrast, and
structure maps. The average execution time for similarity
measures function is ∼0.43 s, which is 17.20% of the total
execution time.

The microarchitectural analysis indicates that there is
a penalty due to L1D replacements, L2D replacements, and
LLC misses due to the large working data set. Along with
bottlenecks in the memory subsystem, the function also suf-
fers from hardware bottlenecks due to assists.59 There are

instructions in the block that cannot be directly executed
by the processor. These instructions are converted into a
stream of microcode that can be executed by the processor.
Each such instruction can generate microcode, which can be
hundreds of instructions long. Therefore, executing these
functions creates a high latency. Calculation of the SSIM
index for each scale requires floating-point operations.
Although the IEEE 754 standard is used for implementation
of floating-point operations, if the floating-point numbers are
very small (denormals), they cannot be directly executed by
the processor. Thus, these floating-point operations are
converted in a stream of microcode and then inserted in
the pipeline of the processor. This microcode is hundreds
of instructions long, causing performance degradation. One
solution to this problem is to write assembly code directly to
set denormals to zero.

5.2.3 LCS average

The LCS average function calculates the luminance and con-
trast maps. The function takes ∼0.17 s, which is 6.58% of
the total execution time.

Observing the microarchitectural analysis results, we find
that the bottlenecks fall into two categories: memory subsys-
tem and core subsystem. The bottlenecks within the memory
subsystem are due to L2D replacements, LLC misses, and
DTLB overhead.

The bottleneck within the core subsystem is the floating-
point divide unit. The calculation of luminance and contrast
requires floating-point operations, which are inherently long-
latency operations. Because of the continuous feed of float-
ing-point operations for every pixel and a total of 10 images,
the floating-point divide unit is overwhelmed. One solution
to improve the performance is to use single-precision float-
ing point instead of double precision.

5.2.4 Mapping algorithmic blocks to
hotspots/hardware bottlenecks

Figure 12 shows the mapping between hotspots/hardware
bottlenecks and the algorithmic blocks of MS-SSIM algo-
rithm. The hotspot functions belong to two blocks: LPF2
and the block corresponding to computation and comparison
of luminance, contrast, and structure. The low-pass filter 11
function belongs to the LPF2 block (55.5% of the execution

Fig. 11 The execution time of MS-SSIM for each pair of reference and distorted images. The contribu-
tions of hotspot functions are stacked together to form the total execution time.
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time) with L1D and L2D replacements, and LLC misses as
the performance bottlenecks. The remaining functions, the
similarity measures and the LCS average function, belong
to the block corresponding to computation and comparison
of luminance, contrast, and structure, which suffers from the
memory bottlenecks along with a core bottleneck of floating-
point divide unit.

5.3 Performance Analysis of VIF
To perform hotspot analysis, the VIF algorithm was applied
for 30 iterations for each image. The results of the hotspot
analysis are shown in Table 5. These results show that the
average execution time for all 42 images is ∼12.12 s. We
also plot the individual execution time for all 42 images
in Fig. 13. The results show that the top two hotspot func-
tions contribute ∼53.89% of the total execution time. There
is minimal variation of the total execution time across differ-
ent image content as well as different distortion types for
VIF, similar to MAD and MS-SSIM. Therefore, neither
the image content or distortion need to be considered when
making the optimizations for VIF.

5.3.1 Pyramid filtering

The pyramid filtering function is the main function of the
Steerable Pyramid. This function is employed to compute
the reference image’s subbands, which are used later to

compute parameters of the reference channel. It consumes
∼3.69 s, which is 30.47% of the total execution time. The
results of the analysis also show that pyramid filtering has
a bottleneck in the core subsystem with stalls due to LEA
instructions.

5.3.2 Pyramid step filtering

The pyramid step filtering function is similar to pyramid
filtering function. This function takes the subsampling
according to the START, STEP, and STOP parameters.
This function is employed to compute the distorted image’s
subbands, which are used later to compute parameters of
the channel. It takes ∼2.84 s to execute, which is 23.42% of
the total execution time.

The microarchitectural analysis for the blocks shows that
the pyramid step filtering suffers from bottlenecks in the
memory subsystem specifically due to L1D replacements.
The results of the analysis also show a bottleneck in the
core subsystem with stalls due to LEA instructions.

5.3.3 Parameters calculation

The parameters calculation function computes the parame-
ters of channels from the filtered subbands. This function
takes ∼2.15 s to execute, which is 17.71% of the total exe-
cution time. The function also suffers from memory bottle-
necks caused by LLC hits and LLC misses. The processor

Fig. 12 Mapping between hotspots/hardware bottlenecks and the algorithmic blocks for MS-SSIM. The
LPF2 block suffers from L1D and L2D replacements, and LLC misses. Similarity measures and LCS
average functions belong to the block corresponding to computation and comparison of luminance, con-
trast, and structure, which suffers from L1D replacement, L2D replacement, DTLB overhead, assists, and
floating-point divide unit.

Table 5 Analysis results of visual information fidelity. Average execution time for top hotspot functions/blocks of 42 images is presented with the
standard deviation. The total execution for each hotspot is calculated from the average. The hardware bottlenecks are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks

Pyramid filtering 3.69� 0.10 30.47 Slow load effective address (LEA) stalls

Pyramid step filtering 2.84� 0.08 23.42 L1D replacement. Slow LEA stalls

Parameters calculation 2.15� 0.08 17.71 L1D, L2D replacement, LLC hit, LLC miss,
DTLB overhead.

Other 3.44� 0.14 28.41 N/A

All 12.12� 0.07 100 N/A
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has to fetch data from the LLC or the RAM. The penalty for
accessing the LLC is ∼26 to 31 clock cycles, while that for
accessing the main memory is hundreds of clock cycles.
Consequently, parameters calculation function is one of
the top hotspots.

5.3.4 Mapping algorithmic blocks to hotspots/hard-
ware bottlenecks

Figure 14 shows the mapping between hotspots/hardware
bottlenecks and the algorithmic blocks of VIF algorithm.
The Steerable Pyramid filtering block, which includes pyra-
mid filtering and pyramid step filtering functions, consumes
∼60% and suffers from generation of slow LEA instruction
stalls generated by the compiler. The statistical computation
block (parameters calculation is the main function of this
block) consumes ∼28.5% and suffers from the major bottle-
neck in the memory subsystem with L1D and L2D replace-
ments, LLC misses, and DTLB overheads.

5.4 Performance Analysis of VSNR
To perform hotspot analysis, the VSNR algorithm was
applied for 30 iterations for each image. The results of hot-
spot for VSNR are provided in Table 6. These results show
that the average execution time for all 42 images for MAD is
∼0.72 s. We also plot the individual execution time for all 42
images in Fig. 15. The results show that VSNR has minimal
variation of total execution time across different image
content as well as different distortion types. Thus, any opti-
mizations for VSNR can be made without any specific con-
sideration of image content or distortion, similar to MAD,
MS-SSIM, and VIF.

As shown in Table 6, the top two hotspot functions con-
tribute ∼49.06% of the total execution time, while all others
account for the remaining 50.94%. Also shown in this
table are hardware bottlenecks (for each hotspot function)
identified via the microarchitectural analysis. The following
subsections describe details of the observed results for
each of the hotspot functions and include explanations of

Fig. 13 The execution time of VIF for each pair of reference and distorted images. The contributions of
hotspot functions are stacked together to form the total execution time.

Fig. 14 Mapping between hotspots/hardware bottlenecks and the algorithmic blocks for VIF. The
Steerable Pyramid filtering block suffers from generation of slow load effective address (LEA) instruction.
The statistical computation block suffers from memory bottlenecks and generation of LEA instructions.
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the underlying computer architecture concepts whenever
necessary.

5.4.1 1-D DWT-columns

The 1-D DWT-columns function computes a 1-D DWT
across the columns of the reference and distorted images.
The function takes ∼0.24 s, which is 32.61% of the total exe-
cution time.

Investigating the microarchitectural resources utilized by
the function, we find that the major penalty for the DWT-col-
umns function is due to LLC hits, which means that the func-
tion is accessing LLC frequently. The LLC takes ∼26 to 31
clock cycles for a single memory access, which is expensive.
Consequently, 1-D DWT-columns is the top hotspot.

Along with LLC accesses as a bottleneck, we find that
there are penalties due to data replacement in L1D and
L2D caches. Performance can be improved by reducing
the L1D and L2D misses, which will automatically reduce
LLC accesses.

5.4.2 Variance

The variance function takes ∼0.12 s, which is 16.45% of the
total execution time. The variance function is employed to
calculate the RMS contrast in the statistical computation
block (Fig. 3). From the microarchitectural analysis, we find
that there are no hardware bottlenecks. This means that
the function has complex instructions with floating-point

numbers that take multiple clock cycles to execute. The
analysis does not show a bottleneck because none of the
floating-point execution units are overwhelmed, and thus,
none of the units cause stalls in processor.

5.4.3 1-D DWT-rows

The 1-D DWT-rows function consumes ∼0.10 s, which is
13.68% of the total execution time. The 1-D DWT-rows
function, similar to 1-D DWT-columns, calculates the DWT
coefficients, but across the rows instead of the columns of the
reference and distorted images.

The microarchitecture analysis shows that the 1-D DWT-
rows function has performance bottlenecks in the memory
subsystem. There are memory reissues because of 4K alias-
ing in this function. In addition, for JPEG5 images, our
results show that there are also micro-operations that get
cancelled due to machine clears.

5.4.4 Mapping algorithmic blocks to
hotspots/hardware bottlenecks

Figure 16 shows the mapping between hotspots/hardware
bottlenecks and the algorithmic blocks of VSNR algorithm.
The five-level 2-D DWT block, which includes 1-D DWT-
columns and 1-D DWT-rows functions, consumes ∼62% of
the execution time, and it suffers from memory bottlenecks
ranging from cache misses to memory violations. Those bot-
tlenecks, however, are nowhere to be found in the statistical

Table 6 Analysis results of visual signal-to-noise ratio. Average execution time for top hotspot functions/blocks of 42 images is presented with the
standard deviation. The total execution for each hotspot is calculated from the average. The hardware bottlenecks are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks

One-dimensional (1-D) discrete
wavelet transform (DWT) columns

0.24�0.02 32.61 L1, L2 replacement, and LLC hits

Variance 0.12�0.04 16.45 None

1-D DWT rows 0.10�0.02 13.68 4K aliasing except JPEG5, machine clears for JPEG5

Others 0.27�0.05 37.28 N/A

All 0.72�0.03 100 N/A

Fig. 15 The execution time of VSNR for each pair of reference and distorted images. The contributions of
hotspot functions are stacked together to form the total execution time.
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computation block (variance and some other functions),
which is also a hotspot with ∼28% of the execution time.

5.5 Performance Analysis of BLIINDS-II
To perform hotspot analysis, the BLIINDS-II algorithm was
applied for 30 iterations for each image. The results of
the hotspot analysis are provided in Table 7. These results
show that the average execution time for all 42 images
for BLIINDS-II is ∼8.03 s. The top hotspot function, fast-
DCT2, contributes ∼47.44% of the total execution time,
while the second one consumes ∼23.44%. The other func-
tions add up to the remaining 29.12%.

Figure 17 shows the individual execution time for all
42 images. This figure shows that the execution time of
BLIINDS-II for JPEG5 images is considerably higher than
that for the other distortion types. The bottlenecks for JPEG5
images and all the other images are discussed in the later
subsections.

5.5.1 Fast-DCT2

The fast-DCT2 function calculates the 5 × 5 DCT of the
image at each of the three scales. The function takes ∼3.81 s,
which is 47.44% of the total execution time.

The microarchitectural analysis show that fast-DCT2
function does not have any bottlenecks. Therefore, to gain

further insight, we calculate the throughput of the function
using the retired pipeline slot metric59 to investigate if the
function traverses the pipeline efficiently. The retired pipe-
line slot metric for the fast-DCT2 function is 0.65, which is
greater than the acceptable value of 0.6. The hardware
resources are being used optimally in this situation. As men-
tioned in Sec. 2.5.2, the fast-DCT2 function uses a look-up
table to store the cosine values. In addition, we use single
loops for first row and column and a nested loop for the
remaining pixels. Because the cosine operation is eliminated
using the look-up table and all other functions are not rela-
tively inexpensive, the throughput is acceptable, having few
stalls and no hardware bottlenecks.

5.5.2 Gamma

The gamma function performs a fitting process of the DCT
data histogram to the Gaussian model as a line search pro-
cedure over 9970 values. This function takes ∼1.88 s to
operate, which is 23.44% of the total execution time.

The microarachitectural analysis shows that the bottle-
neck for this function occurs only for JPEG5 images. For
these images, the gamma function becomes the top hotspot.
The hardware bottleneck is caused by the data being replaced
in the L1D cache, which means the processor fetches data
from the L2 cache, which has higher latency. During the
line search process, the function traverses an array of 9970
values. If there is a match, the traversal stops. We observe
that for JPEG5 images, the function has to traverse to the
end of the array. This 9970-value array needs ∼9970 × 8
bytes (80 KB). However, the L1 cache is 32 KB and cannot
hold all of the data. Therefore, some of the values in the array
are stored in the next level of cache, and for JPEG5 images,
the function has to fetch data from the next level of cache
(L2), resulting in higher latency and higher execution
time. To improve the performance for the gamma function,
one suggestion would be to traverse the array based on the
input image’s profile. For JPEG5 images, traversing the
array from the end would match the value in fewer iterations
and improve performance.

5.5.3 Rho

The rho function is a sorting function used for feature extrac-
tion, which takes the 10th percentile of the sorted array.
Because it is employed for multiple features, it is called

Fig. 16 Mapping between hotspots/hardware bottlenecks and the
algorithmic blocks for VSNR. The five-level 2-D discrete wavelet
transform block (61% of the execution time) suffers from cache
replacements, LLCmisses, 4K aliasing, andmachine clears. The stat-
istical computation block is a hotspot with ∼28% of the execution time,
but there are no bottlenecks.

Table 7 Analysis results of BLIINDS-II. Average execution time for top hotspot functions/blocks of 42 images is presented with the standard
deviation. The total execution for each hotspot is calculated from the average. The hardware bottlenecks are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks

Fast discrete cosine transform 2 3.81� 0.23 47.44 None

Gamma 1.88� 1.70 23.44 None/L1D replacement for JPEG5

Rho 0.30� 0.11 3.69 None

Convolution 0.29� 0.02 3.64 L1D, L2D replacement, LLC hit

Others 1.75� 0.22 21.79 N/A

All 8.03� 1.69 100 N/A
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multiple times in the code. The results of analysis show that
the execution time for rho function is ∼0.30 s, which is
3.69% of the total execution time.

No bottlenecks were shown in the microarchitectural
analysis; we, therefore, computed retired pipeline slot metric
to find the throughput of the function. The retired pipeline
slot metric is 0.2, which is much lower than the acceptable
minimum of 0.6. This finding suggests that the rho function
inherently has complex computations, which require higher
number of clock cycles, but the Vtune Amplifier XE is
unable to identify the exact cause.

5.5.4 Convolution

The convolution function performs convolution across the
image and is employed to perform low-pass filtering. Its
average execution time is close to the rho function’s, at
∼0.29 s, which is 3.64% of the total execution time. From
the microarchitectural analysis, we find that there are L1D as
well as L2D replacement penalties because the function
accesses the LLC to fetch its operands.

5.5.5 Mapping algorithmic blocks to hotspots/hard-
ware bottlenecks

Figure 18 shows the mapping between hotspots/hardware
bottlenecks and the algorithmic blocks of BLIINDS-II algo-
rithm. The block-based DCT block is a hotspot with ∼66%
of the execution time. However, this block has no bottlenecks
with the optimized fast-DCT2 function. The gamma function
is the main function of generalized Gaussian modeling block
(24% of the execution time) and has no bottlenecks except
L1D replacements for JPEG5 images. The convolution func-
tion, one of the LPF block’s functions, suffers from memory
bottlenecks, L1D and L2D replacements, and LLC hits.

5.6 Performance Analysis of BRISQUE
To perform hotspot analysis, the BRISQUE algorithm was
applied for 30 iterations for each image. The results of
the hotspot analysis are provided in Table 8. These results
show that the average execution time for all 42 images for
BRISQUE is ∼2.65 s. The top hotspot function, circularly
shifting, contributes ∼23.02% of the total execution time.
The second hotspot consumes ∼20.75%. The others add up
to the remaining 56.23%.

Figure 19 shows the individual execution time for all
42 images. This figure shows that the execution time of
BRISQUE for JPEG5 images is faster than that for the
other distortion types. Among the top hotspots, the GGD
fitting and AGGD fitting blocks exhibit the most variation;
this variation is discussed in Sec. 5.6.4.

5.6.1 Circularly shifting

The circularly shifting function circularly shifts the MSCN
coefficients one pixel to four orientations to obtain horizontal
(H), vertical (V), main-diagonal (D1), and secondary-diago-
nal (D2) orientated versions. This function is employed to
take into account the statistical relationships between neigh-
boring pixels. This block takes ∼0.61 s to operate, which is
23.02% of the total execution time.

The circularly shifting function clearly shows a loss of
performance due to the CPU caches. The data caches at
both the L1 and L2 caches, and the combined LLC are
all overwhelmed by this function. This is because computing
the pairwise products of the MSCN coefficients with their
four circularly shifted versions requires large amounts of
memory.

Fig. 17 The execution time of BLIINDS-II for all distorted images. The contributions of hotspot functions
are stacked together to form the total execution time.

Fig. 18 Mapping between hotspots/hardware bottlenecks and the
algorithmic blocks for BLIINDS-II. The block-based DCT is a hotspot
with ∼66% of the execution time. However, this block has no bottle-
necks. The Gamma function is the main function of generalized
Gaussianmodeling block and has no bottlenecks except L1D replace-
ments for JPEG5 images. The Convolution, one of the LPF block’s
functions, suffers from memory bottlenecks, L1D and L2D replace-
ments, and LLC hits.
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5.6.2 Low-pass filter 7

The low-pass filter 7 function is an implementation of a 7 × 7
circularly symmetric Gaussian filter. This function is called
four times totally for two scales. The average execution time
is ∼0.55 s, which is 20.75% of the total execution time.

Observing the microarchitectural analysis results, we find
that the bottlenecks are again purely in the memory subsys-
tem. Specifically, the bottlenecks are caused due to L1 cache
misses, L2D replacements, and LLC misses. The low-pass
filter 7 function was optimized to work with two 7 × 1 win-
dows instead of one 7 × 7 window (see Sec. 2.6.2), and thus,
there is no core bottlenecks found here. It needs memory for
the MSCN coefficients, squared MSCN coefficients, and
Gaussian filtered images. Consequently, this function also
has a large memory footprint causing bottlenecks at all levels
of caches in the memory subsystem.

5.6.3 SVM regressor

The SVM regressor block is basically a function call to the
LIBSVM executable via the system function, similar to the
MATLAB® version. It collapses 36 features into one single
quality index. The time for this function is ∼0.47 s, which is
17.74% of the total execution time.

The code currently makes calls to the executable file to
collapse the previously calculated 36 features into a single
BRISQUE index. Since, this executable is not compiled

as a part of the C++ implementation, there is no prefetching
of the instructions (not fetched into the I-cache), which
causes the I-cache misses and branch mispredictions. Similar
issues when linking to external files have been previously
reported (see Ref. 60).

5.6.4 GGD and AGGD fitting

The GGD fitting and AGGD fitting blocks perform a fitting
of the MSCN coefficients histogram to the generalized
Gaussian model, and four pairwise products with an asym-
metric generalized Gaussian model as a search procedure
over 9801 values. Similar to the gamma function in
BLIINDS-II, GGD and AGGD fitting employs a line search
to fit shape, mean, left variance, and right variance to the
values of a gamma function. However, in contrast to
BLIINDS-II, where the fitting process is applied for every
small 5 × 5 DCT block, for BRISQUE, the fitting process
is employed only 10 times. During the line search process,
there could be an early stop when a match is found. There-
fore, the GGD and AGGD fitting block’s execution times
have a larger variation.

This block suffers from memory bottlenecks. Specifically,
the bottlenecks are LLC misses, and L1D and L2D replace-
ments. The block operates on a total of 10 images (eight are
generated from the circularly shifting function and two
MSCN coefficients). Because the block operates separately

Table 8 Analysis results of BRISQUE. Average execution time for top hotspot functions/blocks of 42 images is presented with the standard
deviation. The total execution for each hotspot is calculated from the average. The hardware bottlenecks are also provided.

Function/block Execution time (s) Total execution (%) Hardware bottlenecks

Circularly shifting 0.61� 0.01 23.02 LLC misses, and L1D, L2D replacements

Low-pass filter 7 0.55� 0.01 20.75 L1 cache misses, L2D replacements, and LLC misses

SVM regressor 0.47� 0.03 17.74 Branch mispredict, front end (I-cache)

Generalized Gaussian distribution
(GGD) and asymmetric GGD fitting

0.46� 0.07 17.36 LLC misses, L1D, L2D replacements, and DTLB overhead

Others 0.56� 0.01 21.13 N/A

All 2.65� 0.08 100 N/A

Fig. 19 The execution time of BRISQUE for all distorted images. The contributions of hotspot functions
are stacked together to form the total execution time.
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on two different data sets for two scales, there are replace-
ments in the L1 and L2 cache and misses in the LLC. Since
the block operates on two different data sets, the mapping of
the virtual to physical addresses for both the data sets cannot
fit into the small DTLB, which causes the DTLB overhead.

5.6.5 Mapping algorithmic blocks to hotspots/hard-
ware bottlenecks

Figure 20 shows the mapping between hotspots/hardware
bottlenecks and the algorithmic blocks of the BRISQUE
algorithm. The compute locally normalized luminance block
contains mainly the low-pass filter 7 function. It is a hotspot
with ∼26.32% of the execution time and suffers from L1
cache misses, L2D replacements, and LLC misses. In the
next stage, the compute H, V, D1, and D2 pairwise products
block contain the circularly shifting function with point-by-
point multiplications between the MSCN coefficients and
their circularly shifted versions. This block takes ∼0.65 s to
operate, which is 24.44% of the total execution time. The
GGD fitting and AGGD fitting blocks consume 17.5% of
the running time and suffer from LLC misses, L1D and
L2D replacements, and DTLB overhead bottlenecks.

6 Discussion
In this section, we discuss the bottlenecks and provide an
insight into them across all the six analyzed algorithms.
We first discuss the most common memory bottlenecks and
microarchitectural conscious coding techniques to gain
better performance. Following the memory bottlenecks, we
discuss the core bottlenecks and the techniques to boost per-
formance. We also propose a custom hardware framework,
which can be used as a platform to design engines for IQA
algorithms and image processing algorithms in general.

6.1 Memory Bottlenecks
The results of the microarchitectural analysis show that all of
the IQA algorithms have a backend-bound memory bottle-
neck, but the amount of performance degradation due to
these bottlenecks varies greatly for individual algorithms.

A memory bottleneck essentially means that the hotspot
functions spend a significant amount of time accessing
image data. This is usually because they have read/write
access patterns that result in misses in the CPU caches.
These cache misses have to be serviced from lower levels
of the memory hierarchy that are slower to access, which
is why we see the algorithms spending more time in these
functions and causing them to be hotspots. The large number
of cache misses is due to the large working data set for these
algorithms. All of the algorithms produce intermediate matri-
ces and process them to assess the image quality. Accessing
these multidimensional arrays multiple times causes most of
the performance bottlenecks for all of the IQA algorithms
tested here.

Even though all the IQA algorithms experience memory
bottlenecks, the root cause of the bottleneck as well as the
extent of performance degradation due to these bottlenecks
varies across algorithms. For example, all the hotspot func-
tions in MAD are backend memory bound, whereas VIF has
a memory bottleneck for just the parameters calculation
function. It should be noted that the parameters calculation
function is the last hotspot for VIF, which means that it is not
the major cause for slowdown of the algorithm; its impact on
the performance of the algorithm is not high as other func-
tions, and these other functions are not memory bound. Thus,
it is important to note that even if all the algorithms at some
point have a memory bottleneck, the impact of this memory
bottleneck on the speed or throughput of the complete algo-
rithm depends on the rank of the hotspot, which conse-
quently would decide the priority for optimization.

Another observation from the analysis is that even though
at an abstract level, all the algorithms show memory as a
bottleneck, the actual physical microarchitectural bottleneck
is different for different algorithms. For example, the top two
hotspot functions in MAD have poor performance because of
the DTLB overhead, while the top two hotspots for MS-
SSIM and BRISQUE have a higher execution time because
of the L1D replacements, L2D replacements, and LLCmisses.
Different microarchitectural resources are overwhelmed by
different functions and algorithms.

Fig. 20 Mapping between hotspots/hardware bottlenecks and the algorithmic blocks for BRISQUE. The
Compute locally normalized luminance is a hotspot with ∼26.32% of the execution time and suffers from
L1 cache misses, L2D replacements, and LLC misses. In the next stage, the Compute H, V, D1, and D2
pairwise products block contain the Circularly Shifting function with point-by-point multiplications
between the MSCN coefficients and their circularly shifted versions. This block takes ∼0.65 s to operate,
which is 24.44% of the total execution time. The GGD fitting and AGGD fitting blocks consume 17.5% of
the running time and suffer from LLC misses, L1D, L2D replacements, and DTLB overhead bottlenecks.
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Apart from issues with the usual suspects in the memory
hierarchy (CPU caches at different levels), there are hotspot
functions that show penalties associated with machine clears
and 4K aliasing (as in case of VSNR). Thus, our analysis
has revealed some interesting performance bottlenecks that
would otherwise have gone undetected.

One obvious way to reduce cache misses is to change the
hardware platform to a processor with larger caches. This
will allow more data to reside in the caches, and thereby
reduce the number of cache misses, and will, consequently,
improve performance. However, there is a limit to how big
each level of cache in the memory hierarchy can be, and the
L1 caches are usually kept under 64 KB for fast access. Thus,
it is important that the implementation of an IQA algorithm
respects the principle of locality of reference to maximize
temporal and spatial locality. Locality of reference is the ten-
dency of a program to access the same (temporal locality) or
nearby (spatial locality) memory locations repeatedly and
frequently. Thus, caching these memory locations can reduce
misses. Coding an IQA algorithm with more/better locality
can significantly improve performance.

Another technique for improving locality, which is com-
monly used especially in image processing, is called cache
blocking. It works by dividing larger data chunks into
smaller ones that fit in the cache and making sure that
once the small block is brought into the cache, all the oper-
ations to be performed are performed before moving on to
the next block. Thus, rather than traversing a whole image to
perform one operation and then reading in the whole image
to perform another operation (thus, effectively wiping out the
cache repeatedly), parts of the image are read and processed
at a time while that part is still in the cache.

Accesses to the main memory are very expensive, usually
hundreds of clock cycles. For algorithms, such as MAD, MS-
SSIM, VIF, and BRISQUE, where the bottlenecks are due to
LLC misses/replacements, using software instructions that
can prefetch the data into the caches from the main memory
effectively masks the memory latency and can, thus, increase
perfomance. Such prefetch instructions are suitable when
memory accesses are predictable and when there are CPU
stalls for data being unavailable for processing.

The final memory bottleneck is the DTLB overhead. The
TLB is a small cache, which stores a section of the page table
(a page table stores a mapping between virtual and physical
addresses). When the working data set is large, as in the case
of MAD, the TLB is not able to cache all the active mappings
and this causes DTLBmisses. One solution to this problem is
to use larger page sizes or superpages. With a larger page
size, a TLB of the same size can keep track of larger amounts
of memory, which avoids the costly TLB misses, reducing
the pressure on the TLB.

As an example of applying these techniques, we made
slight modifications to the FFT and Gabor convolution

functions for MAD. We chose these functions because
they are in the top hotspot list. Based on our analysis, we
knew that the architectural bottleneck was related to the
memory hierarchy, as the DTLB, LLC misses, and L1D
and L2D replacement feature prominently for MAD. We
modified the nested loop in the FFT function to improve
the locality and data reuse by removing one layer of nesting.
This had the effect of accessing a cache block multiple times,
as each cache block brought in eight elements of the array
assuming a 64-byte block size, and they were processed
sequentially resulting in seven hits for every miss in the
cache for that loop. The original nested loop processed
only one array element per cache block, which resulted in a
100% cache miss rate for that particular nested loop. The
second modification we made to the Gabor convolution func-
tion was to eliminate the memory required for additional
matrices of the same size of the input image. Essentially,
the optimization was equivalent to changing the statement
C ¼ Aþ B to A ¼ Aþ B, thus reusing the memory allo-
cated to A. These two modifications resulted in a 9%
improvement in terms of running time.

While these examples seem somewhat obvious in retro-
spect, most codecs are written with many such opportunities
overlooked because the focus may not have been on efficient
use of the underlying hardware. It is also not possible to
anticipate the exact hardware bottlenecks without conducting
the kind of analysis illustrated in this paper. The analysis
clearly helps pinpoint the functions that take up the largest
share of the execution time and highlights the architectural
resource being stressed. Thus, a programmer knows where to
look and what changes to make.

6.2 Core Bottlenecks
The next category of bottlenecks is the core bottlenecks or
the bottlenecks caused due to manipulation of data. First, we
discuss the performance degradation caused due to floating-
point operations because they have the most significant
impact on performance in the category of core bottlenecks.

The floating-point operations inherently have a longer
latency and, thus, have a large impact on performance. The
floating-point unit is a bottleneck for MS-SSIM for the LCS
average function. We discuss some generic guidelines to
improve performance for floating-point units.

Operations carried on single-precision floating-point
numbers execute faster than double precision numbers and
consume less memory. For example, the LCS average func-
tion calculates the luminance and contrast of the reference
and distorted images for multiple scales. The mean of
pixel values is used to calculate luminance, while the vari-
ance is used to calculate contrast. All of the algorithms cur-
rently use an 8-bit gray-scale image, which implies that
the resultant luminance and contrast would never exceed the
range supported by 32-bit single-precision floating-point
numbers. Since calculation for luminance and contrast is cal-
culated for multiple scales, using single-precision floating-
point numbers to calculate and represent luminance and
contrast can significantly improve performance. On our test
platform, single-precision floating point can be set through
the precision control field in the ×87 floating-point unit.

Another simple solution is to use integers if possible.
For example, if a particular range varies from 0 to 1, the pro-
grammer can estimate the degree of precision required and

Fig. 21 Blocks for custom image quality assessment (IQA) engine
framework. It consists of three basic computational blocks generally
used in IQA algorithms: image transform engine, the filter banks, and
the image statistics engine.
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choose to express the range from 0 to 10, 0 to 100, 0 to 1000,
and so on (depending on whether one-, two-, or three-digit
precision is required).

The developer of an IQA algorithm should keep in mind
that the operations should remain in range, i.e., ensure that
there are no overflows, underflows, or denormals (extremly
small values) for the results. Denormal values and underflow
can cause high penalties as they require microcode assists. To
improve performance for such a situation, one solution is to
write the code in such a way that denormals are not generated,
which means that the developer should keep track of the range
of the results produced during the floating-point operations. In
addition, by enabling the flush-to-zero (FTZ) and denormals-
are-zero (DAZ) modes,61 there can be significant improvement
in performance. Note that the FTZ and DAZ modes are appli-
cable only for streaming SIMD extension (SSE) instructions.

The next bottleneck is caused due to generation of slow
LEA instructions. LEA instruction is an X86 assembly
instruction generated during compilation. On an Intel proc-
essor, one solution is to use an Intel compiler, which would
produce assembly optimized for Intel’s microarchitectures.
For example, in a loop, the LEA instructions are generated
for the index access. If the index access is reduced, it will
decrease the number of LEA instructions to be executed and,
thus, reduce the overhead.

6.3 Summary and Recommendations for a
Framework for Custom Image Quality
Assessment Hardware

From the microarchitectural analysis, we found that there are
two categories of bottlenecks in the IQA algorithms tested
here: execution/core bottlenecks and memory bottlenecks.
From the analysis, we found that the majority of the algo-
rithms show performance degradation because of the
memory bottlenecks. Other studies also show that memory
is usually a major bottleneck for image processing algo-
rithms. Within the memory bottlenecks, the most common
issue was due to L1D and L2D replacements and LLC
misses. To improve performance in such cases, having larger
caches is recommended. A suitable size for the caches and its
configuration along with defining a memory hierarchy can
be decided by performing cache simulations with various
cache sizes and configurations. A combination of a particular
cache size and configuration that surpasses a predefined
threshold for hit/miss rates should be used. Creating models
for a cache configuration that best suits the performance,
cost, and other requirements of IQA and related algorithms
are topics of future research.

The next common memory bottleneck was the DTLB
overhead. MAD, VIF, and MS-SSIM show performance deg-
radation due to DTLB overhead. A DTLB is a special cache
that stores a subset of translations from virtual memory to
physical memory. For a custom IQA engine, there is no
requirement of a virtual memory system. Hence, this elim-
inates the requirement of using a TLB.

Another bottleneck was 4K aliasing. VSNR is the only
algorithm with 4K aliasing bottleneck. This problem is
caused due to out-of-order execution of memory instructions
in the processor. If the custom hardware engine design is an
in-order machine, we eliminate the possibility of 4K aliasing.

The most common core bottleneck was the overwhelming
of the floating-point unit. All the image transform, image

filtering, and statistic calculation require floating-point oper-
ations and, consequently, a floating-point execution unit.
Operating on a logarithmic number system would improve
the performance. The overhead for converting to log domain
and then transforming back is negligible if the number of
floating-point operations is very large. In a logarithmic sys-
tem, the multiply and divide operations change to add and
subtract operations, respectively, which are less expensive
and can save many clock cycles. A custom IQA engine
would have multiple floating-point units to exploit parallel-
ism. In addition, the unit will be pipelined to hide/overlap the
latency of the instructions for getting data to the IQA exe-
cution engine.

The next core bottleneck was due to the slow LEA
instructions. These instructions are an outcome of the com-
plex addressing mode of the CISC Intel architecture. There-
fore, if the memory control hardware is designed as a load
store machine, the performance degradation is automatically
eliminated. In addition, the proposed custom engine is hard-
coded, which eliminates issues due to generation of such
instructions by the compiler.

The final core bottleneck was the generation of micro
assists. Floating-point micro assists occurred because the
operands or results of an operation were denormals. If the
precision can be traded-off, these denormals are directly con-
verted to zero, and if precision is required, a custom hard-
ware just to process denormals can be designed. A special
port can be designated to dispatch the denormals to this
unit. If there are no denormals, this unit can work as a normal
floating-point unit.

In general, all tested IQA algorithms contain the same
operation at an abstract level: an image transform or filtering
and a statistical computing. For example, MS-SSIM and
BRISQUE use low-pass filters, whereas VIF, VSNR,
MAD, and BLIINDS-II transform the image into frequency
domains via Steerable Pyramid, DWT, FFT, and DCT,
respectively. These algorithms also perform a statistical com-
putation. For example, MS-SSIM needs the mean and vari-
ance to calculate the structure similarity; MAD calculates
the standard deviation, skewness, and kurtosis to form the
statistical difference maps. Therefore, a generic IQA engine
would have a transform engine, a filtering engine, and a stat-
istical computation engine.

A block diagram for a general IQA hardware engine is
shown in Fig. 21. We have a secondary storage to store
the input images. These images are brought into the fast
memory, the caches. From the caches, the images act as oper-
ands to one or more of the three engines depending on the
sequence of operations performed by the specific IQA algo-
rithm. In addition, there are instances where an operation is
performed multiple times. Therefore, we propose a fully con-
nected internetwork. Such an interconnected network helps
to feed data directly to the respective engine, which leads to
reuse of the existing hardware and saves chip area and cost.

The different execution engines are designed as follows:

1. The transform block can be a general-purpose float-
ing-point unit or a transform-specific custom design,
such as a DWT unit in VSNR.

2. The filter blocks can be implemented as a general-pur-
pose filter if multiple filter banks are used or can be
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a specific implementation, such as a log-Gabor filter
unit in MAD.

3. The image statistics block can be implemented as
a general-purpose engine or a custom engine. How-
ever, if we observe the algorithms, they comprise
multiple statistical computations. Therefore, it is not
recommended to create an engine for all, but rather to
utilize a general-purpose floating-point unit. In order
to define which operations needs to be performed, con-
trol signals can be generated. It is suggested to pipeline
these engines. Pipelining would hide some latency for
accessing memory and also improve the throughput of
the hardware. Further details about pipelining, trade-
offs for a pipeline, and designing a pipelined hardware
can be found in Ref. 57.

7 Conclusions
This paper presented performance analyses of six popular
IQA algorithms. Even though the approaches to the six
IQA algorithms are different, the algorithms shared the
same main stages: a filtering (transforming) and a statistical
computation. Our results revealed that different IQA algo-
rithms overwhelm different microarchitectural resources
and give rise to different types of bottlenecks in two main
categories: memory bottlenecks and core/computational bot-
tlenecks. Specific microarchitectural bottlenecks for each
function/block of each algorithm were pointed out. We also
proposed the hardware/microarchitectural conscious coding
techniques for optimization and performance improvement.
The findings and recommendations presented in this paper
apply broadly to all current-generation Intel IA-32 and Intel
64 based general-purpose computing platforms, whether lap-
tops, servers, or desktops, even though the actual hotspot and
bottleneck details might vary. Architectures that are radically
different, with hardware accelerators, dedicated image
processing cores (such as those found on some tablets and
smart phones), and memory shared between GPUs and CPUs
(such as AMD’s Fusion APUs), are expected to show very
different execution characteristics. Further studies using a
similar methodology are recommended to analyze the perfor-
mances of IQA algorithms on these specialized architectures.
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