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1 Introduction
Deinterlacing is an important technique because it converts
interlaced video sequences into progressive sequences for
progressive digital display devices, such as LCDs, plasma
display panels, and organic light-emitting diode TVs.
However, visually annoying artifacts, such as edge flicker,
jagging, blurring, and feathering, often occur due to imper-
fect deinterlacing. Thus, a critical issue related to deinterlac-
ing is removing such artifacts as much as possible.

During the past several decades, numerous deinterlacing
algorithms have been developed.1 We can categorize the
existing algorithms into three groups as follows: spatial dein-
terlacing,2–8 motion-adaptive (MA) deinterlacing,9–11 and
motion compensation (MC)-based deinterlacing.12–22

Spatial deinterlacing algorithms have the advantages of sim-
ple operation and straightforward integration into hardware.
The edge-based line averaging (ELA) algorithm is one of the
most popular deinterlacing algorithms in this category.
However, since all the spatial deinterlacing schemes interpo-
late the missing pixels by using only intrafield information,
the interpolated pixels in the texture area tend to be some-
what blurred.

Primitive temporal approaches such as MA deinterlacing
algorithms have been devised to overcome the drawbacks of
spatial deinterlacing algorithms by using temporal correla-
tion.9–11 MA deinterlacing methods detect the existence of
motion and then use either an intrafield method, i.e., a typical
spatial deinterlacing, or an interfield method. Here, the inter-
ield method is a simple interfield interpolation without
motion compensation. However, this MA deinterlacing
method still suffers from blur or jagging artifacts because

it should apply the intrafield method when interpolating
missing pixels in moving objects.

Recently, more advanced temporal deinterlacing methods
that are based on some form of motion-compensated tech-
niques have become popular.13–22 For example, Chang et
al. presented an adaptive four-field global/local motion-com-
pensated approach where the same parity four-field motion
detection and four-field motion estimation detect static areas
and fast motion by four reference fields, and global motion
estimation detects camera panning and zooming motions.13

However, this algorithm may give rise to feathering artifacts
when the assumption of strong continuity of local motion
does not work. Fan and Chung proposed a temporal deinter-
lacing algorithm using strong spatial-temporal correlation-
assisted motion estimation.17 To our knowledge, Fan’s algo-
rithm is the state-of-the-art deinterlacing scheme. However,
since conventional temporal deinterlacing algorithms inher-
ently cannot compensate for registration error between the
current field and its reference fields, they have a limitation
in further improving visual quality.

On the other hand, maximum a posteriori (MAP) estima-
tion has recently been applied to numerous image
reconstruction techniques, e.g., deblur, denoising, and super-
resolution. In statistics, MAP estimation is a method of esti-
mating the parameters of a statistical model. When applied to
a data set and given a statistical model, an MAP estimator
provides estimates for the model’s parameters. For example,
MAP estimators are often used for superresolution
reconstruction.23,24 Superresolution restoration aims to solve
the following problem: given a set of observed low-resolution
images, estimate a high-resolution image. The observed low-
resolution images are regarded as degraded observations of a
real, high-resolution texture. These degradations typically
include geometric warping, optical blur, spatial sampling,
and noise. Given several such observations, the MAP estimate
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of the superresolution image may be obtained such that, when
reprojected back into the images via a generative imaging
model, it minimizes the difference between the actual and pre-
dicted observations.24 Note that if accurate motion information
of a certain missing pixel is given, the MAP-based superre-
solution can reconstruct the missing pixel such that it is
very close to its original.

We showed that if the MAP estimator is applied to tem-
poral deinterlacing, subjective visual quality as well as objec-
tive visual quality can be improved by minimizing inherent
registration errors in missing pixels in Ref. 20. In this paper,
we propose an advanced MAP-estimator-based deinterlacing
algorithm using high-performance MC method and strong
mode decision. The proposed algorithm consists of four
steps. First, accurate multiple-field registration is performed
between the current field and its neighboring fields. Second,
the progressive frame corresponding to the current field is
reconstructed via an L1-norm-based MAP estimator using
the predicted motion fields. Here, in order to obtain an opti-
mal solution, the well-known steepest descent algorithm is
employed. Also, bilateral total variation (BTV)-based regu-
larization is applied to obtain a stable solution and preserve
edges well. Third, a mode decision module determines
whether the result from the aforementioned temporal dein-
terlacing is acceptable or not. The proposed mode decision
relies on three factors: feathering artifacts, registration errors,
and motion vector (MV) correlation. Fourth, if the temporal
deinterlacing is determined to be inappropriate by the mode
decision, a typical spatial deinterlacing based on edge-direc-
tional interpolation is applied instead of the MAP estimator-
based temporal deinterlacing. Experimental results show that
the proposed algorithm obtains at maximum 2 dB higher
peak signal-to-noise ratio (PSNR) than the state-of-the-art
spatiotemporal deinterlacing algorithm, i.e., Fan’s algo-
rithm,17 while providing better visual quality.

The remainder of this paper is organized as follows.
Section 2 describes the proposed deinterlacing algorithm
in detail. Section 3 provides intensive experimental results.
Finally, we conclude this paper in Sec. 4.

2 Proposed Algorithm
As illustrated in Fig. 1, the proposed deinterlacing algorithm
has a structure similar to a typical spatiotemporal deinterlac-
ing scheme based on a hard decision between spatial dein-
terlacing and temporal deinterlacing. The main contribution

of this paper is that we can reconstruct even registration
errors in temporal deinterlacing by employing a MAP esti-
mator. Note that previous temporal deinterlacing methods
output motion-compensated pixels only. The proposed algo-
rithm, meanwhile, can produce outstanding visual quality,
especially around diagonal edges, while significantly reduc-
ing jagging or feathering artifacts in comparison with the
state-of-the-art deinterlacing schemes.

The proposed algorithm consists of four steps, as seen in
Fig. 1. First, an advanced motion estimation (ME) algorithm,
which is an improved version of the spatial-temporal corre-
lation-assisted search (STFS) proposed in Ref. 17, is applied
to the current field and adjacent fields. Second, based on the
estimated motion information, MAP estimator-based tempo-
ral deinterlacing for the current field is performed. Third, on
a block basis, a mode decision module determines whether
the result from the temporal deinterlacing is acceptable or
not. Fourth, if the temporal deinterlacing result is determined
to be unacceptable, a typical spatial deinterlacing is applied.
The following subsections describe each step of the proposed
algorithm in more detail.

2.1 Registration Using the Advanced STFS
2.1.1 Conventional STFS

Prior to describing the advanced STFS, we explain the con-
ventional STFS (Ref. 17) in detail as follows. As illustrated
in Fig. 2(a), three consecutive fields, i.e., fn−1; fn; fnþ1, are
involved in the estimation of the motion trajectory. The bidi-
rectional ME and the two kinds of unidirectional ME, i.e.,
forward and backward ME, are combined in order to fully
exploit the information from the three fields.

Let SADP and SADN be the sum of absolute differences
(SAD) between two blocks used in the backward ME and
forward ME, respectively, and let SADB be the SAD between
two blocks used in the bidirectional ME, where these terms
are defined as follows:

SADBðqÞ ¼
X

ðx;yÞ∈b
jfnþ1ðxþm;yþ nÞ− fn−1ðx−m;y− nÞj

SADNðqÞ ¼
X

ðx;yÞ∈b
jfnðx; yÞ− fnþ1ðxþm;yþ nÞj

SADPðqÞ ¼
X

ðx;yÞ∈b
jfnðx; yÞ− fn−1ðx−m;y− nÞj; (1)

where (x; y) denotes a position in the current block b, and
q ≡ ðm; nÞ indicates a candidate MV within the given search

Advanced STFS

Mode decision

MAP estimator 
based temporal 
de-interlacing

Spatial 
de-interlacing

Input interlaced fields

Reconstructed frame

Fig. 1 Block diagram of the proposed deinterlacing algorithm.
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Fig. 2 Conventional spatial-temporal correlation-assisted search
(STFS) scheme.
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range. The best MV q̂ ¼ ðm̂; n̂Þ for the block b is then
obtained by minimizing the following cost:

q̂ ¼ argmin
q

½SADðqÞ�; (2)

where

SADðqÞ ¼ SADBðqÞ þ SADNðqÞ þ SADPðqÞ: (3)

Note that the information from the three consecutive
fields is involved in the estimation of the motion trajectory.
From Fig. 2(a), q̂ is chosen as the initial MV candidate ~vini.
For each matching block, there are four spatial MV candi-
dates and five temporal MV candidates, as in Fig. 2(b).
The spatial/temporal bidirectional MV candidates are sorted
according to the number of occurrences. For the current
block, the matching error corresponding to each spatial/tem-
poral MV candidate ~vST is compared to the matching error of
the initial MV candidate ~vini according to Eq. (4). The com-
parison is performed starting from the candidate with the
maximum number of occurrences.

jSADð~vSTÞ − SADð~viniÞj < T1; (4)

where T1 is a predetermined threshold that is a function of
SADð~viniÞ. If Eq. (4) is satisfied, ~vST is chosen as the final
MV. Otherwise, the candidate with the second largest num-
ber of occurrences is compared to the initial candidate, and
so on. If all the spatial/temporal MV candidates fail to pass
the matching error check, ~vini is chosen as the final MV.

2.1.2 Advanced STFS

In order to obtain more accurate and denser MVs than the
conventional STFS, we apply the overlapped motion com-
pensation scheme to the STFS. Note that MV estimation
is performed on an 8 × 8 block basis, but the matching
block size is 16 × 16. As shown in Fig. 3, the best MV
for a specific 8 × 8 block is obtained by block matching
for the extended 16 × 16 block with the 8 × 8 block as a
center. The conventional STFS is used for this block match-
ing. Finally, the estimated MV for the extended 16 × 16
block is allocated to the 8 × 8 center of the matching
block. Table 1 shows the superiority of the advanced
STFS to the conventional STFS in terms of PSNR. For
this experiment, we employed the same progressive common
intermediate format (CIF) sequences as in Sec. 3 and pro-
duced their interlaced versions in the same fashion as
described in Sec. 3. For each method, we computed the

PSNR between the motion-compensated frame and the origi-
nal frame. We compared the averaged PSNR for the first 300
frames of each sequence as an objective evaluation measure.
For example, Table 1 shows that the advanced STFS outper-
forms the conventional STFS by 0.8 dB at maximum for the
container sequence. This is because the advanced STFS can
produce more accurate and denser MVs than the conven-
tional STFS. Thus, we applied this advanced STFS for regis-
tration of the proposed temporal deinterlacing, which is
described in the following subsection.

2.2 MAP Estimator-Based Temporal Deinterlacing
The key point of the proposed algorithm is to reconstruct
even registration errors in temporal deinterlacing by employ-
ing a MAP estimator, whereas previous temporal deinterlac-
ing methods output motion-compensated pixels only. In
order to formulate the MAP estimation problem for temporal
deinterlacing, we should define the acquisition model of an
interlaced field. First, we assume that a progressive frame F
may have a motion model M with adjacent frames. Next, a
space-invariant point spread function (PSF)H is applied to F
for antialiasing. Finally, an interlaced field f is generated by
applying an interlace decimation operator D and adding a
noise component V. Note that the decimation operator D
alternatively subsamples even lines and odd lines, and the
decimation operation is defined as follows:

fnðx; yÞ ¼
�
Fnðx; yÞ; if xmod 2 ¼ nmod 2

0; otherwise
: (5)

According to Eq. (5), the n’th field fn is derived from the
n’th frame Fn. The current field and its neighbor fields are
then defined as

fn ¼ DnHnMnF þ Vn n ¼ 1; : : : ; N: (6)

Let the processing block size be b × b and the scaling
ratio be set to r∶1. Then, F in Eq. (6) has a dimension of
[r2b2 × 1], which is arranged in lexicographic order. The
[r2b2 × r2b2] matrix Mn is the geometric motion operator

16x16 matching block

MV allocation on a 8x8 block basis

Fig. 3 The overlapped matching of the advanced STFS.

Table 1 Peak signal-to-noise ratio (PSNR) comparison between con-
ventional spatial-temporal correlation-assisted search (STFS) and the
advanced STFS (dB).

Name Conventional STFS Advanced STFS

Foreman 37.69 38.02

Mobile 28.77 28.68

M & D 47.37 47.47

Stefan 31.07 31.23

Coastguard 38.25 38.32

Table tennis 35.62 36.01

Container 46.59 47.42

Average 37.91 38.16
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between the original progressive frame F and the n’th inter-
laced field fn of size [b2 × 1]. The PSF is modeled by the
[r2b2 × r2b2] matrix H. The [b2 × r2b2] matrix Dn repre-
sents the decimation operator and the [b2 × 1] matrix Vn
denotes the system noise. Based on this model, we propose
the MAP estimator-based temporal deinterlacing algorithm.

In general, a MAP estimator for the original progressive
frame F given the observed interlaced fields fn can be for-
mulated to find the MAP estimate F̂ via the following Lp
minimization:

F̂ ¼ argmin
F

�XN
n¼1

kDnHMnF − fnkpp þ λΓðFÞ
�
; (7)

where λ is a control parameter and N is the number of refer-
ence fields for MAP estimation. Note thatHn ¼ H because a
common PSF is assumed for all fields without loss of gen-
erality. The second term is known as regularization. Consider
regularization in deinterlacing is very useful for finding a sta-
ble solution.23 Among many possible regularization terms,
we select BTV-based regularization, which results in a
full progressive frame with sharp edges and is easy to imple-
ment. The BTV-based regularization term is defined by

Xτ

l¼−τ

Xτ

m¼0
lþm≥0

αjljþjmjkF − SlxSmy Fk1; (8)

where τ and α are parameters to control the regularization
level, and Slx and Smy are operators to shift by l and m pixels
in the horizontal and vertical directions, respectively. This
paper employs L1-norm regularization owing to its simplic-
ity and edge-preserving property. Also, L1-norm is applied to
the data term, i.e., the first term of Eq. (7), to minimize sen-
sitivity to noise, i.e., p ¼ 1.

In addition, we compare BTV-based regularization of
Eq. (8) with a typical TV-based regularization23 to show
the superiority of the BTV-based regularization quantita-
tively and qualitatively. Table 2 compares BTV-based regu-
larization and TV-based regularization in terms of PSNR.

The PSNR value in Table 2 is the average PSNR for the
first 50 deinterlaced frames per sequence. We can see that
BTV-based regularization provides at maximum 1.1 dB
and on average 0.4 dB higher PSNRs than TV-based regu-
larization. For example, Fig. 4 shows the deinterlacing
results for carphone and foreman sequences. Note that the
TV-based regularization causes some artifacts for flat
areas due to its sensitivity to noise. On the other hand,
the proposed BTV-based regularization seldom shows
such a phenomenon because it is inherently robust against
noise and preserves the details such as edges and textures
better than TV-based regularization. As a result, we can
achieve high-quality temporal deinterlacing via this robust
regularized MAP estimator.

We use the steepest descent algorithm to find the solution
to Eq. (7). We can thus obtain an optimal solution in the fol-
lowing iterative manner. That is, the (tþ 1)’th MAP estimate
F̂tþ1 is derived from the t’the estimate F̂t.

F̂tþ1 ¼ F̂t − β

8>>><
>>>:

P
N
n¼1 M

T
nHTDT

n signðDnHMnF̂t − fnÞ
þλ

P
τ
l¼−τ

P
τ
m ¼ 0

lþm ≥ 0

αjljþjmj½I − S−my S−lx �signðF̂t − SlxSmy F̂tÞ

9>>>=
>>>;
; (9)

where β is a scalar defining the step size in the direction of
the gradient and I is an identity matrix. The matrices M,
H, andD and their transposes can be exactly interpreted as
direct image operators, such as shift, blur, and decima-
tion.23 Noting and implementing the effects of these matri-
ces as a sequence of operators spares us from explicitly
constructing them as matrices. This property allows the
proposed temporal deinterlacing method to be imple-
mented in an extremely fast and memory efficient way.
After several iterations according to Eq. (9), an optimal
progressive frame F̂ corresponding to the current field
is reconstructed from N consecutive fields including
the current field. Finally, MAP estimator-based temporal

deinterlacing is completed by replacing the missing field
pixels in the current field with the corresponding pixels
in F̂.

2.3 Mode Decision
Conventional spatiotemporal deinterlacing methods often
suffer from feathering, blur, and jagging artifacts caused
by false mode decision. For instance, feathering artifacts
occur near object boundaries due to occlusion or inaccurate
MVs. Mode decision, hence, significantly affects the visual
quality of spatiotemporal deinterlacing algorithms. Fan and
Chung employed the so-called slope detector (SD)-based

Table 2 PSNR comparison between total variation (TV) regulariza-
tion and bilateral total variation (BTV) regularization (dB).

Name TV regularization BTV regularization

Foreman 37.75 38.87

Stefan 31.89 32.03

Carphone 33.94 34.15

Flower 31.20 31.61

Football 33.08 33.10

Highway 36.39 36.73

Salesman 37.96 38.61

Average 34.60 35.01
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feathering artifact detector due to its low complexity and
high detection ability.17

This paper presents a stronger mode decision method that
additionally takes into account mean of absolute differences
(MAD) values, MV correlation, and MAD correlation.
Figure 5 illustrates the proposed mode decision scheme
where the MV reliability is examined on a block basis in
two steps. Assume that the MVs are produced by the
advanced STFS. First, for each block that is motion-compen-
sated by the advanced STFS, feathering artifacts are detected
by the aforementioned SD-based detector of Ref. 17. If a
feathering artifact is not detected, temporal deinterlacing
is applied to the block. Otherwise, additional examination
is performed with more information. The reason why we
chose such a conservative approach is that the blur phenome-
non caused by spatial deinterlacing is visually less annoying
than feathering artifacts. The second examination procedure
is explained in greater detail below.

Since the SD-based detector depends on the motion-com-
pensated image only, it may cause false positives in detecting
various feathering artifacts. We hence propose an additional
step to reduce the false positive rate of the first step by taking
into account MAD values, MV correlation, and MAD cor-
relation. As shown in Fig. 5, if the MAD of the current block
is sufficiently small, i.e., MADðv̂Þ < δ1, and the MAD and

MV of the current block are highly correlated with those of
its neighbors, i.e., corðMVÞ < δ2 & corðMADÞ < δ3, we
determine that the current block has a reliable MV. Let
corðMVÞ be the L1-norm distance between the current
MV and the component-wise median of MVs of its eight-
connected blocks, while corðMADÞ indicates the L1-norm
distance between MADðv̂Þ and the average MAD for the
eight-connected neighbor blocks. In this paper, δ1, δ2, and
δ3 are empirically set to 20, 5, and 5, respectively.
Therefore, since this second decision step further examines
the MV reliability independently of the motion-compensated
image, it can effectively prevent the entire mode decision
from being trapped in false positives.

2.4 Spatial Deinterlacing
For spatial deinterlacing of the proposed algorithm, we
adopted a block-based directional interpolation algorithm
proposed by Chen and Tai in Ref. 14. This subsection briefly
introduces Chen’s algorithm. Figure 6 shows a deinterlaced
frame, where the dotted line indicates the missing scan line
that needs to be interpolated and the solid lines indicate the
original field data. It is assumed that the missing pixel
fnðx; yÞ is centered in a target block BC; BUq and BLq
are defined as the corresponding upper and lower referenced
blocks, respectively, and q is assumed to be a candidate
directional vector between the BC and its upper candidate
block. Note that the blocks BC, BUq, and BLq only contain
pixels in fn. The best directional vector q̂ is detected using
the following equation:

q̂ ¼ argmin
q∈Ω

½SADUðqÞ þ SADLðqÞ�; (10)

where SADUðqÞ and SADLðqÞ denote the SAD between BC
and BUq, and the SAD between BC and BLq, respectively.
The search range of q, i.e., Ω, includes 23 directional vectors
so as to detect edges whose degrees are greater than 7.5. Let
SADðq̂Þ be the minimal cost according to Eq. (10). When
SADðq̂Þ is greater than a certain threshold θ1, or the differ-
ence between SADðq̂Þ and SADðq̂þ 90 degÞ is not greater
than a threshold θ2, the selected q̂ is not reliable, and the
typical line average filter is used to construct the final result.
In this paper, θ1 and θ2 are empirically set to 30 and 10,
respectively.

3 Experimental Results

3.1 Experimental Condition
First, for an objective quality evaluation, we used 12
progressive CIF sequences; foreman, mobile, mother and
daughter (M&D), Stefan, coastguard, table tennis, con-
tainer, flower garden, football, highway, Paris, and tempete.
We generated the interlaced fields by applying a simple

Fig. 4 The deinterlaced frames according to regularization term.

Feathering 
artifact detection

SAD <δ1 &
cor(MV)< δ2 &
cor(SAD)< δ3

Temporal de-interlacingSpatial de-interlacing

No

No

Yes

Yes

MC block

Fig. 5 The proposed mode decision scheme.
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x+1
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Fig. 6 Edge-based spatial deinterlacing.

Journal of Electronic Imaging 043038-5 October 2013 • Vol. 22(4)

Lee et al.: Spatiotemporal deinterlacing using a maximum a posteriori estimator. . .



low-pass filter of {1, 2, 1} to those progressive frames and
alternatively subsampling the low-pass filtered frames. After
deinterlacing, we computed the PSNR between the recon-
structed progressive frame and the original frame. Note
that only Y components are treated here. We chose the aver-
aged PSNR for the first 300 frames of each sequence as an
objective evaluation measure.

We compared the proposed algorithm with LA, ELA,
Lee’s algorithm,9 Chang’s algorithm,13 Chen’s algorithm,14

Fan’s algorithm,17 Yang’s algorithm,18 Mohammadi’s algo-
rithm,21 and Trocan’s algorithm.22 The number of reference
fields for the proposed temporal deinterlacing was set to 3,
i.e., the current field and its temporally previous and next
fields.

The search range for registration in the proposed algo-
rithm and Chang’s algorithm was �32 both horizontally
and vertically. All the block sizes for matching in the
advanced STFS were set to 16 × 16 and the block sizes of
overlapping are set to 8 × 8. In Eq. (8), α and τ are fixed
to 0.5 and 2, respectively. Figure 7 shows the influence of
a parameter α on the overall performance of the proposed
algorithm for four test sequences, i.e., highway, carphone,
foreman, and football. For this experiment, when deinterlac-
ing the first field of each sequence, we progressively changed
α from 0.1 to 1.0 and tracked the PSNR values accordingly.
From Fig. 7, we can observe that as α becomes larger than
0.5, the PSNR starts to decrease. So, we set α to 0.5. Through
a similar experiment, we found that another parameter τ
rarely affects the overall performance of the proposed algo-
rithm. So, we fixed τ to an acceptable value. Table 3 shows
the appropriate values of the other parameters, i.e., β and λ
chosen for each sequence to maximize the temporal deinter-
lacing performance in terms of PSNR. Note that β and λ
should be determined on a shot basis in a sequence. For in-
stance, since the foreman and table tennis sequences consist
of two different shots, we derived and applied two different
parameters to those sequences, as given in Table 3.

Figure 8 shows the effects of the parameters in Eq. (7) on
the overall performance of the proposed temporal deinterlac-
ing. This experiment was performed for a field in the first
shot of the foreman sequence. From Fig. 8(a), we can
observe that if the optimal parameters are used, the PSNR
performance is very stable. On the contrary, Fig. 8(b)
shows that if nonoptimal parameters, i.e., the parameters
of the second shot, are employed, the PSNR performance
drastically decreases as the iterations go on, and the peak
PSNR also becomes low in comparison with that in
Fig. 8(a). From Fig. 8, we can also find that the termination

point of iteration is important. Thus, we selected the optimal
number of iterations for each sequence, as given in Table 3.

3.2 Performance Evaluation
Table 4 shows the PSNR results of several algorithms for 12
test sequences. For this experiment, we implemented LA,
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Fig. 7 Peak signal-to-noise ratio (PSNR) performance according to α
for four video sequences.

Table 3 Parameter setting for temporal deinterlacing.

Name

Shot #1 Shot #2

Iterationβ λ β λ

Foreman 1.3 0.2 1.5 0.1 5

Mobile 1.1 0.05 — — 4

M&D 0.5 0.2 — — 4

Stefan 1.0 0.3 — — 2

Coastguard 0.2 0.2 — — 4

Table tennis 0.5 0.2 0.7 0.1 5

Container 0.1 0.2 — — 4

Flower garden 1.5 0.05 — — 50

Football 1.1 0.05 — — 10

Highway 0.9 0.15 — — 10

Paris 1.5 0.05 — — 30

Tempete 1.5 0.05 — — 10
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Fig. 8 PSNR values according to the number of iterations for the first
shot of the foreman sequence. (a) Results with the optimal parame-
ters. (b) Results with nonoptimal parameters.
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ELA, Chang’s algorithm,13 and Mohammadi’s algorithm21

personally and verified them. We can see that the proposed
algorithm provides ~5 dB higher PSNR than Chang’s13 and
Mohammadi’s algorithms21 on average. Especially, for con-
tainer sequence, the proposed algorithm goes beyond
Chang’s algorithm13 up to 12 dB.

In addition, Table 5 provides PSNR comparison results
for several recent methods in the literature. In Table 5, the
numerical values of Refs. 9, 14, 17, 18, and 22 were directly
extracted from those papers. Hence, a few values are not
available in the table. Note that the proposed algorithm pro-
vides on average 0.8 dB higher PSNR than the cutting-edge
algorithm, i.e., Fan’s algorithm.17 For the Stefan sequence, in

Table 4 PSNR comparison for different deinterlacing algorithms
(dB).

Sequences

Line
averaging

(LA)

Edge-
based
LA (ELA) Ref. 13 Ref. 21 Proposed

Foreman 33.6 34.2 34.4 33.0 38.6

Mobile 25.4 23.5 26.8 24.8 33.9

M&D 39.8 38.8 44.6 41.6 46.2

Stefan 28.3 27.3 29.7 28.5 32.4

Coastguard 28.5 27.8 30.3 31.0 37.1

Table tennis 28.9 27.8 33.5 31.9 35.3

Container 28.9 27.9 34.7 38.3 46.7

Flower 22.6 22.1 22.8 27.9 30.5

Football 34.8 34.4 32.7 31.4 35.7

Highway 32.3 32.4 32.5 31.4 37.0

Paris 27.1 26.8 33.2 33.5 35.3

Tempete 29.2 28.3 29.9 28.9 32.3

Average 30.0 29.3 32.1 31.8 36.8

Table 5 PSNR comparison for different deinterlacing algorithms in
the literature (dB).

Sequences Ref. 9 Ref. 14 Ref. 17 Ref. 18 Ref. 22 Proposed

Foreman N/A 33.8 38.1 32.9 37.3 38.6

Mobile 30.3 27.7 33.3 N/A 31.5 33.9

M&D 46.2 45.0 45.8 N/A N/A 46.2

Stefan 28.0 28.8 30.5 26.5 31.3 32.4

Coastguard 32.9 N/A 35.9 30.9 N/A 37.1

Table tennis 34.0 37.0 36.4 28.2 N/A 35.3

Container 39.6 45.5 45.3 44.2 N/A 46.7

Flower garden N/A N/A N/A N/A N/A 30.5

Football N/A N/A N/A N/A N/A 35.7

Highway N/A N/A N/A N/A N/A 37.0

Paris N/A N/A N/A N/A N/A 35.3

Tempete N/A N/A N/A N/A N/A 32.3

Note: Bold values indicate the maximum PSNR for each sequence.
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Fig. 9 PSNR performance according to the frame number.
(a) Foreman. (b) Mobile. (c) Container.
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Fig. 10 The deinterlaced frames for the mobile sequence. (a) Original. (b) Line averaging (LA).
(c) Chang’s method.13 (d) Proposed method.

Fig. 11 The deinterlaced frames for the Stefan sequence. (a) Original. (b) LA. (c) Chang’s method.13

(d) Proposed method.
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Fig. 12 The results for a cropped region of the car sequence. (a) Input interlaced frame. (b) LA.
(c) Chang’s method.13 (d) Proposed method.

Fig. 13 The results for a cropped region of the table tennis sequence. (a) Input interlaced frame. (b) LA.
(c) Chang’s method.13 (d) Proposed method.
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particular, we achieve a significant PSNR improvement of
~2 dB over Fan’s algorithm. We also find from the available
PSNR values in Table 5 that the proposed algorithm is supe-
rior to Trocan’s algorithm.22 As a result, the proposed algo-
rithm outperforms the previous works in terms of objective
visual quality of PSNR. In addition, Fig. 9 shows the PSNR
values according to the frame number. We can state that the
proposed algorithm consistently provides higher PSNR val-
ues than the previous works.

In Figs. 10 and 11, the deinterlaced results for mobile and
Stefan sequences are compared. Note that the proposed algo-
rithm produces a deinterlaced result close to its original
frame, while Chang’s algorithm and LA suffer from visually
annoying artifacts, such as jagging and blur. For the mobile
sequence (see Fig. 10), we find that the proposed algorithm
outperforms the others. Especially observing the numbers in
the calendar, the proposed algorithm shows almost the same
visual quality as the original frame. From Fig. 11, we can
find a perfect court line generated by the proposed temporal
deinterlacing. Note that the competitors show severe jagging
artifacts and line-crawling in the near horizontal edges.

In addition, Figs. 12 and 13 show the deinterlaced results
for real interlaced video sequences. We adopted two well-
known interlaced sequences (720 × 480i), car and table ten-
nis. Even for real interlaced video sequences, the proposed
algorithm still provides outstanding visual quality without
any artifacts in comparison with the existing methods. For
example, LA and Chang’s algorithm show jagging and feath-
ering artifacts [see Figs. 12(b) and 12(c)], but the proposed
algorithm does not cause such artifacts, as shown in
Fig. 12(d).

In addition, we measured the execution times of several
algorithms. This experiment was executed on a quad-core
CPU at 2.66 GHz with 3 GB DDR2 DRAM. Since motion
estimation occupies most of the complexity of MC-based
deinterlacing algorithm, we adopted a fast full search25

and a famous fast search algorithm, i.e., enhanced predictive
zonal search (EPZS)26 for fast motion estimation in this
experiment. Table 6 compares the proposed algorithm
with LA, ELA, and Ref. 13 in terms of the CPU running
time. Note that each numerical value indicates the average
for the first 10 fields of foreman sequence, and all the algo-
rithms were implemented in MATLAB®. We could find that
in comparison with fast full search, the EPZS cuts the CPU
running time of the proposed algorithm in half with an
acceptable PSNR drop of ~1 dB on average. The proposed
algorithm using EZPS still provides ~1.8 times longer execu-
tion time than Ref. 13. However, if we employ several opti-
mization skills additionally, we can significantly reduce the
computational cost of the proposed algorithm.

4 Concluding Remarks
This paper presents a robust temporal deinterlacing algo-
rithm based on an MAP estimator. First, registration using

an advanced STFS algorithm is performed between the cur-
rent field and its neighboring fields. Second, the progressive
frame corresponding to the current field is found via an L1-
norm-based MAP estimator based on the predicted interfield
MV information. Third, a mode decision module determines
whether the result from the temporal deinterlacing is accept-
able or not. Finally, edge-directional interpolation is applied
to the pixels whose MVs are not reliable, instead of the afore-
mentioned temporal deinterlacing. Experimental results
show that the proposed algorithm yields at maximum
2 dB higher PSNR than the cutting-edge deinterlacing algo-
rithm,17 while providing better visual quality.
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