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Abstract. We propose a frequency domain scheme for obtaining
subpixel estimates of interframe motion for arbitrary shaped regions.
Our scheme is based on phase correlation and the shape adaptive
discrete Fourier transform and one of its key features is that it does
not require extrapolation, which requires extra complexity and can
dilute the accuracy of the estimated motion parameters. We demon-
strate that our method outperforms in terms of subpixel accuracy
and motion-compensated prediction error both conventional phase
correlation but also shape adaptive techniques operating in the fre-
quency domain and requiring extrapolation. © 2006 SPIE and
IS&T. �DOI: 10.1117/1.2170582�

1 Introduction
Motion estimation is a critical component of various video
processing tasks, especially video compression, allowing
redundancy reduction in the temporal domain. International
standards for video communications such as MPEG-1/2
and H.261/3 /4 employ the well-established hybrid two-
component architecture, which relies on motion estimation
and compensation as well as on the lossy compression of
the motion-compensated prediction error. Motion estima-
tion in such standards is carried out by means of block
matching in the data domain with one motion vector por-
traying the motion of each block. Such block-based ap-
proaches offer well-documented implementation advan-
tages such as low complexity and low overheads mainly
due to their regularity. On the other hand, they have a num-
ber of well-known disadvantages. A block may contain
more moving objects than just one, in which case a single
motion vector derived from the most dominant object will
cause large motion compensation errors in areas occupied
by the other objects. Conversely, a moving object may be
contained in more blocks than one. Any errors in estimating
motion vectors for those blocks are likely to cause blocking
artefacts. Various attempts at departing from established
block-based approaches have been made, most notably in
video coding systems like MPEG-4, while in H.264 a vari-
able block size approach was preferred to shape coding.
While motion estimation is not a normative element, most
compliant architectures implement arbitrary shape motion
estimation in the pixel domain using suitable modifications
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to the well-known block-matching algorithm, such as ex-
trapolation of the arbitrary shaped area until the limits of a
bounding rectangle are reached. Such pixel-domain modi-
fications inherit some of the disadvantages of baseline
block matching such as complexity, assuming an exhaus-
tive search strategy for the identification of the minimum
error location. In the wider literature, object-based motion
estimation is well represented albeit most approaches oper-
ate in the pixel domain. An exhaustive review would be
outside the scope of this paper but it is worth mentioning
Refs. 1–4 to name but a few.

Recently there has been a lot of interest in motion esti-
mation techniques operating in the frequency domain be-
cause they offer well-documented advantages in terms of
computational efficiency due to the employment of fast al-
gorithms. Perhaps the best-known method in this class is
phase correlation �PC�,5 which has become one of the mo-
tion estimation methods of choice for a wide range of non-
consumer applications.6 In addition to computational effi-
ciency, PC offers key advantages in terms of its strong
response to edges and salient picture features, its immunity
to illumination changes and moving shadows, and its abil-
ity to measure large displacements without sacrificing sub-
pixel accuracy.

In this letter we propose an arbitrary-shape motion esti-
mation algorithm based on PC. While in Ref. 7 we pro-
posed a solution using conventional extrapolation, i.e., by
padding with the average �mean� intensity of the arbitrary-
shaped object, in this work we present an extrapolation-free
algorithm using the shape adaptive discrete Fourier trans-
form �SA-DFT� methodology.8

This letter is organized as follows. In Sec. 2 we briefly
review the principles underlying subpixel motion estima-
tion using PC. In Sec. 3 we present the arbitrary-shape
phase correlation algorithm. In Sec. 4 we report experimen-
tal results while in Sec. 5 we draw conclusions arising from
this work.

2 Motion Estimation Using Phase Correlation

Baseline PC operates on a pair of images �or cosited
blocks� f t and f t+1 of identical dimensions belonging to
consecutive frames or fields of a moving sequence sampled
at t, t+1. The estimation of motion relies on the detection
of the maximum of the cross-correlation function between
f t and f t+1. Since all functions involved are discrete, cross-
correlation is circular and can be carried out as a multipli-
cation in the frequency domain using fast implementations.
The real-valued correlation surface is defined as

ct,t+1�k,l� = F−1� Ft
*Ft+1

�Ft
*Ft+1�

� �1�

where Ft and Ft+1 are respectively the two-dimensional dis-
crete Fourier transforms of f t and f t+1; F−1 denotes the in-
verse Fourier transform, and * denotes complex conjugate.
The coordinates �km , lm� of the maximum of the real-valued
array ct,t+1 can be used as an estimate of the horizontal and
vertical components of motion at integer-pixel precision be-

tween f t and f t+1 as follows:
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�km,lm� = arg max�ct,t+1�k,l�� . �2�

Subpixel accuracy of motion measurements is obtained by
variable-separable fitting performed in the neighborhood of
the maximum using one-dimensional quadratic functions.6

Using the notation in Eq. �2� above, prototype functions are
fitted to the triplets:

�ct,t+1�km − 1,lm�,ct,t+1�km,lm�,ct,t+1�km + 1,lm�� and

�ct,t+1�km,lm − 1�,ct,t+1�km,lm�,ct,t+1�km,lm + 1�� . �3�

The location of the maximum of the fitted function pro-
vides the required subpixel motion estimate �dx ,dy�. For
example, fitting a parabolic function horizontally to the
left-hand side of Eq. �3� yields a closed-form solution for
the horizontal component of the motion estimate dx as fol-
lows:

dx =
ct,t+1�km + 1,lm� − ct,t+1�km − 1,lm�

2�2ct,t+1�km,lm� − ct,t+1�km + 1,lm� − ct,t+1�km − 1,lm��
.

�4�

The fractional part dy of the vertical component can be
obtained in a similar way using the right-hand side of Eq.
�3�.

3 Arbitrary Shape Phase Correlation
The proposed arbitrary shape phase correlation �ASPC�
scheme assumes that an object is available �i.e., obtained
using segmentation� for an object of interest in the target
�i.e., next� frame. The motion of this object needs to be
estimated relative to a reference �i.e., current� frame. The
ASPC algorithm consists of two main steps. First, SA-DFT
is applied to pixel values inside the object both in the target

Fig. 1 Artificial example: �a� original, �b� showing accurate segmen-
tation mask, and �c� showing inaccurate segmentation mask relative
to the new object location.
Fig. 2 Correlation surface using proposed ASPC �inaccurate mask�.
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and reference frames. Then, PC is applied using Eqs.
�1�–�4� in order to obtain motion estimates of subpixel ac-
curacy.

3.1 Shape Adaptive Discrete Fourier Transform
SA-DFT is based on the notion that the DFT of a vector can
be interpreted as the transform of a periodic signal, one
period of which is processed. The signal doesn’t need to be
shifted, it suffices to extend it periodically and to compute
the DFT starting from the beginning of a row/column.

We consider a one-dimensional vector of data samples
x�n� of size N with n=0,1 , . . . ,N. We assume that NS

samples belong to the object of interest with n=m, m
+1, . . . ,Ns+m−1 while the remaining samples are consid-
ered to belong to another object or the background. The
application of SA-DFT consists of the following steps:

• Periodic extension of the NS object samples to span
the entire range of values n=0,1 , . . . ,N, i.e., set x��n
+kNS�=x�n� with k= . . . ,−2 ,−1 ,0 ,1 ,2 , . . ., and 0�n
+kNS�N.

• Computation of the NS-point DFT.
• Scaling of the results. In this case the scaling factor is

1 /�NS, which makes the 2-D transform orthogonal.9

The above can be extended to two dimensions in a variable-
separable fashion �i.e., application of the above steps first
horizontally then vertically�. This allows the computation
of SA-DFT for any arbitrary shaped region.

Given an arbitrary-shaped region in frame t+1 �i.e., the
next frame� motion is estimated between the image data
f t+1 inside this region and image data f t inside a cosited
region in frame t �i.e., the current frame�. If Ft and Ft+1
denote respectively the SA-DFT of f t and f t+1, the final step
is to apply the phase correlation method using Eqs. �1�–�4�.

4 Experimental Results
In our experiments we used the well-known broadcast reso-
lution �720�576 pixels, 50 fields per second� MPEG test
sequences ‘Mobcal’ and ‘Basketball.’ Only the luminance
component was considered and to avoid complications due
to interlacing, only even-parity field data were retained. We
highlight the principles underlying our scheme using an
artificial example. We manually segment the ‘ball’ object
from a single frame of ‘Mobcal’ and superimpose it on the
‘calendar’ object from the same sequence without low-pass
filtering object boundaries. We then create an artificial se-
quence by displacing the two objects relative to each other
by progressively varying shifts of subpixel accuracy. These
shifts are then used as ground truth. We consider two cases

Fig. 3 Object masks for ‘train’ �a� and ‘player’ �b�.
�shown in Fig. 1� corresponding respectively to accurate
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and inaccurate segmentation of the ‘ball’ object to reflect
the real possibility of a segmentation algorithm providing
variable quality results. In Fig. 2 we show a magnified por-
tion of the correlation surface for the proposed ASPC
scheme. While for conventional phase correlation two
peaks would have emerged �each corresponding to the mo-
tion of each of the two objects ‘ball’ and ‘calendar’�, for
ASPC only a single peak emerges corresponding to the
motion of the ‘ball’ object. This becomes a critical consid-
eration when the motion parameters of two �or more� ob-
jects are similar �but not identical� and hence the proximity
of the corresponding peaks on the correlation surface may
prevent the accurate extraction of the dominant motion pa-
rameters.

Next, we compare the proposed scheme with conven-
tional PC and the shape adaptive phase correlation �SAPC�
algorithm presented in Ref. 7, which is based on padding
using the average intensity of the object of interest. In Table
1 we show the average MSE relative to the ground truth
subpixel displacement parameters �computed over the total
number of frames� obtained for both accurate and inaccu-
rate segmentation scenarios of object ‘calendar.’ Overall,
these results demonstrate �best cases underlined� that the
proposed scheme achieves consistently higher accuracy
compared to both alternative schemes.

Next we turn our attention to the estimation of real mo-
tion. We identify arbitrary-shaped objects of interest such
as the ‘train’ object in ‘Mobcal’ and the ‘player’ object in
‘Basketball.’ The objects are determined manually and are
shown in Fig. 3. We have deliberately allowed the objects
to be inaccurate, i.e., not following closely the outline of
the object under consideration or even omitting part�s� of it.
This is a reflection of the fact that object definition will
occasionally be inaccurate in a practical situation if this is
obtained from automatic segmentation while this may not
be true for manual segmentation. Performance is compared
to conventional PC using a rectangular block �of the same

Table 2 Average motion-compensated prediction MSE performance
comparison for real motion.

Real Motion ‘train’ ‘player’

Block Matching 281.949546 313.995271

Phase Correlation 312.856572 266.257170

SAPC7 181.317667 202.621286

ASPC �proposed� 153.140966 201.528410

Table 1 Average ground truth MSE performance comparison for
artificial motion.

Artificial Motion

‘calendar’

Accurate mask Inaccurate mask

Phase Correlation 0.1363671 0.1363671

SAPC7 0.1316538 0.1302917

ASPC �proposed� 0.1277144 0.1268891
Journal of Electronic Imaging 010501-
size in pixels as the arbitrary-shaped object�, which in-
cludes a large section of the object. Performance is assessed
either using the motion-compensated prediction MSE �av-
erage values computed over the total number of frames are
shown in Table 2� or the peak signal-to-noise ratio �PSNR�
as a function of frame number �shown in Fig. 4� for the two
sequences under consideration. It is worth noting that Table
2 includes a comparison with spatial-domain block-
matching, which further underlines the potential of our
method. Our results confirm the superiority of the proposed
scheme, i.e., by as much as 4 dB compared to conventional
phase correlation.

5 Conclusions
In this letter an arbitrary shape motion estimation algorithm
based on phase correlation was presented. Owing to the fact
that the scheme operates in the frequency domain it enjoys
a high degree of computational efficiency and can be
implemented by fast algorithms such as the FFT. Our ap-
proach avoids extrapolation and uses information only from
moving objects of interest thereby yielding higher accuracy
motion estimates. Our results have shown that the proposed
method outperforms conventional phase correlation as well
as shape adaptive phase correlation using extrapolation
both for artificially-induced motion using manually ex-
tracted objects as well as actual interframe motion.
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