Key to the calculation of the expected sensor response is the probability $pi,m$ that a jot of type $i$ will be at or above threshold in sampling interval $m$. This probability can be computed calculating forward from the first to the last sampling interval. Display Formula
$pi,1=Q(\lambda i,1,\theta i,1),$(2)
Display Formula$pi,2=ri,1Q(\lambda i,2,\theta i,2)+\u2211n=0\theta i,2\u22121\lambda i,1ne\u2212\lambda i,1n!Q(\lambda i,2,\theta i,2\u2212n)+\u2211n=\theta i,2\theta i,1\u22121\lambda i,1ne\u2212\lambda i,1n!,$(3)
Display Formula$pi,m\u22653=ri,m\u22121Q(\lambda i,m,\theta i,m)+\u2211n=0\theta i,m\u22121P1,m\u22121(i,n)Q(\lambda i,m,\theta i,m\u2212n)+\u2211j=1m\u22122ri,j\u2211n=0\theta i,m\u22121Pj+1,m\u22121(i,n)Q(\lambda i,m,\theta i,m\u2212n)+\u2211n=\theta i,m\theta i,m\u22121P1,m\u22121(i,n)+\u2211j=1m\u22122ri,j\u2211n=\theta i,m\theta i,m\u22121Pj+1,m\u22121(i,n).$(4)