Regular Articles

Hierarchical graph color dither

[+] Author Affiliations
Alejo Hausner

University of New Hampshire, Department of Computer Science, Durham, New Hampshire 03824

J. Electron. Imaging. 17(2), 023001 (May 22, 2008). doi:10.1117/1.2916703
History: Received August 15, 2006; Revised August 16, 2007; Accepted October 01, 2007; Published May 22, 2008
Text Size: A A A

Suppose a dispersed-dot dither matrix is treated as a collection of numbers, each number having a position in space; when the numbers are visited in increasing order, what is the distance in space between pairs of consecutive numbers visited? In Bayer’s matrices, this distance is always large. We hypothesize that this large consecutive distance is important for good dispersed-dot threshold matrices. To study the hypothesis, matrices that have this quality were generated by solving a more general problem: given an arbitrary set of points on the plane, sort them into a list where consecutive points are far apart. Our solution colors the nearest-neighbor graph, hierarchically. The method does reproduce Bayer’s dispersed-dot dither matrices under some settings and, furthermore, can produce matrices of arbitrary dimensions. Multiple similar matrices can be created to minimize repetitive artifacts that plague Bayer dither while retaining its parallelizability. The method can also be used for halftoning with points on a hexagonal grid, or even randomly placed points. It can also be applied to artistic dithering, which creates a dither matrix from a motif image. Unlike in the artistic dither method of Ostromoukhov and Hersch, the motif image can be arbitrary and need not be specially constructed.

© 2008 SPIE and IS&T

Citation

Alejo Hausner
"Hierarchical graph color dither", J. Electron. Imaging. 17(2), 023001 (May 22, 2008). ; http://dx.doi.org/10.1117/1.2916703


Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Book Chapters

Topic Collections

Advertisement
  • Don't have an account?
  • Subscribe to the SPIE Digital Library
  • Create a FREE account to sign up for Digital Library content alerts and gain access to institutional subscriptions remotely.
Access This Article
Sign in or Create a personal account to Buy this article ($20 for members, $25 for non-members).
Access This Proceeding
Sign in or Create a personal account to Buy this article ($15 for members, $18 for non-members).
Access This Chapter

Access to SPIE eBooks is limited to subscribing institutions and is not available as part of a personal subscription. Print or electronic versions of individual SPIE books may be purchased via SPIE.org.